Introduction to Fluorescence Microscopy - Dyes (Rogier Min)

What are the types of interactions that a sample can have with light?	Imaging samples - Types of interaction					
	fluorescence Fluorescence - Substance absorbs light and almost immediately emit light in a longer wavelength					
What are the difference between structure and function dyes?	 Types of dyes Structure dyes Alexa dye family Dextran dye family Function dyes Calcium indicators (OGB, Fura, Indo, Fluo) Sodium (SBFI, sodium green) Chloride (MQAE) 					
Describe how AM-esther dye loading works.	How to get the dye in place inside the sample					
Describe how extracellular injection dye loading works.	Sharp electrode Whole-cell patch damp Single cell electroporation B 'Acute' network loading C C C C C C C C C C C C C C C C C C C					
Describe how electroporation dye loading works.	AM bading Dextran-conjugate loading Bulk electroporation C GECI expression					

	 AM-Esther dye loader - Lypophilic shell around dye; once it enters the cell, the AM esther is cleaved by estherases present in the cell, dye only then starts to fluoresce and it cannot leave the cell Extracellular injection - Endocytosis/Pynocytosis cause the dye to get inside the cell Add dye to pipette solution during patch clamp Electroporation - Dyes are often charged, when you shock the membrane it becomes more porous and the dye is able to get in Can be done with a single cell or many cells at a time
What are the advantages and disadvantages of inserting the dye via intracellular recording?	 1)Intracellular recording Single cell resolution, fill all cell compartments Invasive technique, disruption to cell membrane Inva
What are the advantages and disadvantages of inserting the dye via electroporation?	 2. Electroporation Image: Single or multiple cell, can be done with different cell populations Invasive technique with precise timing required
What are the advantages and	3. Bulk loading

disadvantages of inserting the dye via bulk loading?	 Multiple cell loading, easy application Background staining can obscure fine processes, variable intracellular concentrations, DMSO and detergents are used in loading; Tends to work better with tissues from young animals compared to older animals 			
What are the main dyes used for structural imaging?	Dyes for structural imaging • Fluorescein $H^0 + f^0 + f^$			

	Dye that Possibly	.5mM [K+] _o AC	Om Om ally take c pumps	ins en up by s only es	/ astr	ocyte (sed in	(not neu astrocy	rons) - tes
What is	Quantum yiel	d - For each	photon	it absor	rbs, h	low ma	any pho	tons it emits
quantum yield?	back (values c	loser to 1 in	dicate b	righter	dyes)		
	Dye ^a	MIFcorr	logD _{hyd} c	logD _{unhyd} c	λ _{max} (ex)	λ _{max} (em)	ε (M ⁻¹ cm	⁻¹) ^d QY ^d
	Abberior STAR 635P azide	0.21±0.02	n/a	0.58	634	654	80000	0.55
	Alexa 488 SE	-0.003 ± 0.007	-11.09	-8.02	494	517	73000	0.92
	Alexa 532 SE	0.04±0.01	-3.26	-0.16	530	555	81000	0.61
	Alexa 546 SE	0.18±0.03	-3.68	-1.43	554	570	112000	0.79
	Alexa 555 M	0.04±0.03	-	-	556	572	158000	0.1
	Alexa 568 hydrazide	0.04±0.01	n/a	-5.89	576	599	86000	0.69
	Alexa 594 M	0.3±0.1	-7.4	-3.66	588	612	96000	0.66
	Alexa 633 M Alexa 647 SE	0.03±0.02	- 5.44	-3.72	651	672	270000	- 0.33
	Alexa 647 M	0.04±0.02	-8.1	-4.26	651	671	265000	0.33
a good ion to analyse cellular function?	 Cells have calcium Ca cor ser Kd - Dis saturates 	ve high pota lcium is use ncentration sed (why ca sociation co s faster	assium, l ed for sig - Small c alcium d nstant (l	ow sod maling hanges lyes are ower n	ium, becau in cc so p umbe	low ch use of f oncentr opular er -> hi	hloride a this very ration ca :) igher aff	nd very lov 7 low in be easily inity and
How are most calcium indicators made?	Calcium indicators • Used based on EGTA/BAPTA are present in the molecules as ionophores (groups that bind to calcium) EGTA EGTA BAPTA BAPTA GOOH_2/2/ OCH_2CH_2OH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2C							
	• These ionophores are bound to fluorophores in order to make the calcium indicators							

What are radiometric indicators?	 Radiometric indicators - Calcium binds leads to shift of electrons from the fluorophore to the ionophore -> Shift energy levels of ground/excited states Spectral shift of Fura-2 QBT* Calcium Dye when bound to Ca²⁺ 100/00 - Exclusion (C-Herr) 100/00 - Exclusion (C-Herr)<
What are intensiometric indicators and how do they compare with ratiometric indicators?	Intensiometric indicators - Calcium free ionophore quenches the fluorescence of the fluorophore when there is no calcium, when calcium binds, the quenching decreases and the fluorescence intensity increases $\int_{1}^{\frac{5}{10}} \int_{1}^{\frac{5}{10}} \int$
What are the main advantages of modern fluorescence dyes compared to 100 years ago?	 Advantages of modern fluorescence dyes compared to 100 years ago Visualizing living cells - No fixation artefacts Visualizing dynamic morphological changes - Resolution of single molecules, and miliseconds Visualizing cells in vivo - The same neuron/dentrite can be followed for months Trace long-range projecting axonal pathways Distinguish multiple cellular types
What are the advantages of fluorescent dyes compared to other techniques?	 Disadvantages of fluorescent dyes Can influence the decay time of calcium signals (buffer effect) Neuron naturally have buffering proteins (PV), but an additional buffer may lead to a disturbance of normal processes Can increase spatial spread of calcium - The dyes are much more mobile than endogenous buffering proteins

• Can be toxic (byproducts of de-esterification) - May damage the cells
• Can compartimentalize inside the cell - Clumps may be bound to organelles
Unwanted effects - E.g. Fluorescent Ca2+ indicators inhibit Na-K- ATPase

Introduction to voltage imaging (Marko Popovic)

What is the core advantage of using voltage imaging, as opposed to calcium imaging?	Calcium is a secondary inference point - voltage changes, calcium influx happens Voltage is a primary point
What is the source of shot noise?	Shot noise - Physical phenomenon of any light source-> light sources are not perfectly consistent (1000 photons/sec is an average of all time points) $\int_{per time per detector} \int_{per detector} \int_{per detector} \int_{perform 0} $
How can you mitigate the problems of shot noise?	 Timelapse imaging 5% increase from baseline - Masked from the photons emitted from noise; overlap between the two curve distributions 4 4 4 4 5 800 900 1000 1100 1200 1200 10

to increase light intensity?	 Phototoxicity - Reactive oxygen species damage the cell; solution - short bursts of imaging Trial averaging or accumulation - not possible with random events Signals need to be aligned/very well describe - Such as an action potential
	 Reduce spatial resolution - Reduce magnification Each individual pixel is exposed to more light
	 Reduce temporal resolution - Reduce detection rate Still needs to be good enough to identify fast processes Image: Another and Another another and Another another another another anoo
	 The higher NA, the shorter the imaging distance
What are	Other sources of noise
other sources of noise, aside from shot noise?	 Excitation light noise Fluctuations of your lamp, the quieter the light source the better Vibration noise If the provide the better
	 If your specimen is moving around the same Needs an antivibration table
	Read noise
	 Photons per time per detector - CMOS detector have really good read noise
What are the main things to do in order to get the best possible image?	Imaging tips (Summary) Maximize the light intensity to maximise signal to noise ratio Signal rises linearly with light and noise rises with sqare root of light To get more light intensity you have to compromise something (resolution, speed or add phtotoxicity/bleaching) Choose an appropriate resolution to capture your object at a Nyquist rate without sacrificing light intensity!

Why use voltage imaging, instead of using electrodes?	 Measuring membrane potential transients (why use voltage instead of electrodes?) You cannot use 30 electrodes in one cell Some processes are really thin and difficult to patch 			
What was the main shortcome of the first voltage sensitive dye?	 Voltage sensitive dye imaging (VSDI) Line - Electric signal Dots - Optic signal (varied because of shot noise) Squid axon Squid axon<			
What should be the main properties of voltage sensitive dyes?	 VSD imaging in acute slices Fluorescent indicator Water soluble Fast kinetics Linear response Minimal capacitive load Should not be fluorescent outside the cell Fluorescence needs to increase due to depolarization Signal as high as possible Low phototoxicity Dyes: JPW1114(Di-2-ANEPEQ) - Signal is low, very high phototoxicity; labels golgi, ER, nucleus, every organelle But only one structure reports fluorescence change -> the plasma membrane 			

Introduction to Fluorescence Microscopy - 1photon vs 2-photon imaging (Rogier Min)

What are the main problems of widefield microscopy?	Widefield microscopy main problem - Limited resolution, staining is often required to see sample features Conventional fluorescence microscopy - High intensity light source needed to activate fluophore; The entire field of view is illuminated Epifluorescence - Background illumination is quite high, image looks blurry
What is the principle of confocal microscopy?	Confocal microscopy - Aimed to overcome problems with widefield microscopy
	 PTP Same principle as pinhole camera - Small aperture -> better focus Only light that comes from a particular plane of the sample is able to get to the detector - Two points are confocal (same point in the lens)

	 B In order to change the plane, you change the excitation light or pinhole position
What are the	Confocal laser scanning microscopy - XY movement in the sample
possible	Stage-scanning - Stationary laser beam and moving stage platform -
ways to	Easiest design to achieve
move the	Beam-scanning - Moving laser beam and stationary platform
laser in	• Produced by a galvanometer (rotation movement of mirror
confocal	changes direction of light)
microscopy?	
	 Acousto-optic deflector: can produce fast (microsecond) jumps of the laser beam -> more accurate than galvanometer
	 Piezo driven objective scanner - Z movement
	Alternative: Electrically Tunable Lens to get z-movement
Describe how Nipkow spinning disk works.	 Nipkow spinning disk microscopy Stationary laser and platform, but scan with a disk array of miniature apertures Multibeam scanning methods
	Synchronised, rapidly-rotating pinhole discs

	 No need for a pinhole - You can look at all the light that comes back Main difference to a one-photon microscope - Use two photon with half the wavelength, but super quickly and really focused on one point in the sample, are used to excite the fluorophore one-photon wo-photon one-photon come-photon absorption is maximized in your focal point -> increases resolution compared to widefield
What are the advantages of 2-photon microscopy?	Advantages of 2-photon microscopy Less scattering, it allows to visualize much deeper in the tissue Sample is excited only at focal point - Less photobleaching/phototoxicity
What are the disadvantage s of 2-photon microscopy?	 Disadvantages of 2-photon microscopy Expensive Worse xy resolution compared to 1 photon Not all dyes/fluorophores work well for 2-photon excitation

Fluorescence recovery after photobleaching (FRAP)

What is FRAP?	What is FRAP?Uses localized bleaching of fluorescence to study diffusion kinetics and transport
What are the two different types of FRAP?	 Types of FRAP Confocal scanning microscope - Imaging and bleaching light path are the same Use of the same Use
What does the AOTF (acousto- optical tunable filter) do in the FRAP setup?	 Light path for FRAP Laser light source with AOTF attenuation - Low intensity for imaging and high intensity for bleaching in the same setup Acousto-Optical Tunable Filter Anatomy Polarized Acoustic Absorber Uncident and Light Construction of the same setup Incident and Diffracted Waves Figure 10 Scanning optics (XY scanning mirrors) -> Moved by galvanometer
What is the basic principle of FRAP?	Basic experimental setup

	 baseline bleaching recovery Sample with fluorescently labelled protein or strucutre Stable and sufficient expression levels of native protein Determine areas to bleach - Whole cell or particular organelles/ structures Image baseline time series Make sure the bleaching rate is slower during normal imaging compared to bleaching periods Bleach the selected areas Area needs to be large enough to measure diffusion Bleaching should be 5x faster than diffusion rate Image acquisition needs to be fast enough to quantify kinetics
Which control experiments should you do before using FRAP?	 Important control experiments Bleaching rate should be minimal during regular acquisition Important control experiments Diffusion of unbound protein - maximum rate of diffusion in the system FRAP on fixed sample - No recovery is possible
Which ROI measurements can you take from FRAP? What information do they tell you?	Example measurements

What are the data processing steps of FRAP?	 Data processing Background subtraction - Removes non-specific signal from the image Acquisition bleach correction - Removes bleaching due to image acquisition Fluorescence normalization - Axelrod (recovery rate - how quickly it goes to a new steady state); Siggia (define which fraction of you protein is mobile or immobile)
How can you tell mobile/immobi le fraction of proteins based on FRAP fluorescence?	Parameters • • • • • • • • • • • • • • • • • • •
What are some biological applications of FRAP?	 Examples from experiments Sharing of vesicles between synapses FM dyes - Used to study endocytosis Bleach one synapse - If it recovers fluorescence, then vesicles are shared between synapses in the same neuron

acquire 3D volume via z-stacks, difficult at high speeds of acquisition) • Less of a problem in axons, big problem in somas

Optogenetics: Things I wish I knew before beginning my PhD (Madison Carr)

	 Human research - Correlative, interventions are often clinical, need to be non-invasive Animal research - Causal, neuronal or subneuronal scale
How does one design a functional experiment relation behavior to brain activity?	 Functional experimental design Observe phenomenon - Hypothesize correlation between behavior and potential mechanism; Obsevations can assess electrical activity (whole cell recordings, extracellular electrodes); calcium activity (photometry/2-photon); activity markers (c-fos, immediately early genes)
How to assess the relationship between brain activity and behavior?	 How to determine the relationship between brain activity and behavior? Loss of function - It the brain region necessary for behavior? Lesion studies, pharmacology, genetic knockouts Gain of function - Can it trigger or induce the behavior? <i>Is it sufficient?</i> Electrical stimulation, pharmacology
What are the main problem of classical interventions in behavioral neuroscience?	 Problems with classical interventions Targeting specifity Reversibility - Compensatory effects in lesion studies Temporal resolution
How can optogenetics be used to assess both loss and gain of function?	 Optogenetic experiment I construction - Halorhodopsin (assess if the neurons are necessary) Gain of function - Channelrhodopsin (assess if the neurons are sufficient)
What are practical considerations for choosing your opsin?	 Choosing your opsin Actuators - Channels (channelrhodopsin), pump (halorhodopsin/archeorhodopsin), GPCR-associated Pumps are energetically costly - Needs more light and may disturb cellular processes Channels are less costly, need less light Archeorhodopsin - If you expose light for a long time at the terminals, it excites the neuron instead of inhibiting it Consider spectral properties, especially if you are combining opto with calcium imaging

	 Step-function opsin - One light pulse opens the channel and it is opened until light at a different wavelength is shined upon Solves light toxicity effects Consider kinetics - Your opsin need to have the temporal resolution adequate to the mechanism you are studying
What are the different types of transgenes that can be used in a cre system?	 Building your vector Cell-type - Promoter-dependent Cre-recombinase is only expressed in neurons of interest - This protein is necessary to flip the transgene or the removal of a stop cassette recombination using a flexed transgene recombinate re
What is the main consideration when choosing a brain region to study relating to the surgery damage?	 Stereotaxic surgery Adjusting Kobs Stull Exctoole Exctoole Exctoole The second secon
What are practical considerations for a light delivery system?	 Light delivery system Slice or in vivo Frequency, intensity, pulse width

What are practical considerations for behavioral observation in rodents?	 Behavioral observation Complex behaviors are controlled by heterogeneous populations Optogenetic identification - What neurons are doing during the behavior? Sham activation - Make sure that the light is not distracting to the performance of the behavior
Why optogenetics experiments don't necessarily point to causality between neuronal activation and behavior?	 Limitations of optogenetics Not necessarily causal - If the animal performs a behavior if the brain region is activated (ecological limitations of behavioral experiments, down/upstream effects to other brain regions) Solution of the brain regions are redundant - Loss/gain of function does not imply causality
What is Marr's 3 levels of analysis? (not in exam)	Marr's 3 levels of analysis computation Algorithm why (problem) Algorithm why (problem) algorithm why (problem) algorithm why (problem) bis bis 1 2 understanding manipulation flapping feathers Why? What? How? Marr's 3 levels of analysis understanding manipulation transport transpo
Solve the following exercise:	 Exercise You want to investigate the whether layer 5 pyramidal neurons (from the prefrontal cortex [PFC]) which are known to project to the dorsal striatum (DS) influence motor 'tic behaviors', which are thought to be caused by excessive MSN firing/output. However, these pyramidal neurons are known to heterogeneously project onto both fast-spiking interneurons and also directly onto inhibitory MSNs. What suggestions do you have (using optogenetics and potentially other tools), to test if either population of DS-projecting pyramidal neurons play a role in modulating MSN output, and thus controlling tic-like behaviors? Existing 'fast-spiking interneurons (FSIs): Supply feed-doward inhibition Control bursting Restrict plasticity PV-Cre mouse can be used to target interneurons Fast spiking interneuros - Require a fast-kinetics channelrhodopsin Tic behavior - Combining behavior with motor learning (motor problem or learning problem)

Expansion Microscopy (Bart van Dijk)

	 Role of glia in cognition Mice with subarachinassociated with glia Upon gliosis, astrocy 	noid hemorrhage hav damage (gliosis) ⁄tes lose their suppor	e memory problems tive properties
Why is expansion microscopy potentially more applicable than conventional superresolutio n techniques?	 Imaging astrocytic proces They are very small, nm) Superresolution mic 	s smaller than the diff roscopes are really ex	raction limit of light (80 kpensive!
What is the principle behind expansion microscopy?	 techniques? That is the cinciple end of the component of the comp		Embedding tissue in h baby diapers) $\frac{100}{10, \text{ H}^{\circ}}$ - This is not possible for t, which is great to reduce roblems in the Z axis due $\frac{100}{100}$ $\frac{100}{100}$ Errors (blue line mean±SD

What are the	Advantages of expansion microscopy
advantages of	Superresolution - 60-80 nm
expansion	Used with standard lab equipment (confocal)
microscopy?	Can be used for many tissue types
	Becomes transparent, better for light microscopy
	Can separate multiple protein interaction
What are the	Disadvantages
disadvantages	Cannot be used in live cells
of expansion	Requires some expertise in handling and imaging of gels - For
microscopy?	instance, wash away PBS (contains salts) before embedding
	• Expensive superresolution microscopes still have better resolution

Stimulated Emission Depletion Microscopy (STED) (Joris Nassal)

	 Excitation and STED laser need to be very precisely aligned (spatially and temporally, 100s of picosends) Scanning mirror moves the laser through your sample You need STED lasers for every wavelength of fluorophore, but it two fluorophores are close enough (GFP and YFP) you only need one Pinhole is present like normal confocal microscopy
Can STED be used in living animals?	In vivo STED imaging • Animal is head fixed
What are the advantages of STED?	 Pros of STED Higher spatial resolution (XY and Z) Physical superresolution -> does not require subsequent image reconstruction, like PALM or STORM Fast scanning is possible Live cell and in vivo capable - Possible to combine different fluorophores with 2-photon microscopy Multicolor is possible
What are the disadvantages of STED?	 Cons of STED Very high intensity of depletion laser necessary (phototoxicity) Fewer photons collected due to smaller effective fluorescent spot -> more sensitive detectors are needed System needs to be well aligned to obtain super resolution
What is SUSHI?	Superresolution Shadow Imaging (SUSHI) - Combination with 3D-STED Super-resolution shadow imaging (SUSHI) Mouse brain slices

Acute slicesExtracellular dye is added - Unlimited pool of fluorophores -
 > shadow of the neuron • Very precise view of the extracellular space

- STED is patented by LEICASTORM is patented by Nikon

Miniaturized Microscopes (Tycho Hoogland)

	 Green Calmodulin Protein (GCaMP) - GFP + Calmodulin + M13 Non-linear relationship between fluorescence and calcium concentration
What are the advantages and disadvantages of using viral injections instead of transgenic lines?	 Delivery of GECI using viral vectors Virus (AAV) that allow transduction in cells of interest Promoters can specify neuronal population Possible problem - Overexpression of GCaMP Alternative: Transgenic line (lower expression)
What is the main problem of widefield imaging?	Widefield imaging - Collection of light from different focal planes
What is the miniscope and its main applications?	 Miniscope - Minituarized fluorescence microscope, sufficiently small such that it can be carried on the head of an animal Reduced stress compared to head-fixed setups Intact vestibular system Suited for sleep studies, social interaction, action sequencing, fidgeting, vocalization (learning of stereotypical sounds), bird flight
How do two- photon miniscopes work?	 Two photon miniscopes Requires a high frequency pulse laser (100k euros) Requires efficient optical fibers (femtosecond transmisison of information), miniturized scanning mechanism, small objective lens, effective fluorescence collection

	 A Bingle-mode fiber Fiber Fiber Fiber Fiber Fiber Fiber Fiber Option 2 Flexible tether Option 1 Flexible tether Option 1 Flexible tether Option 1 Flexible tether Option 1 PMT - Photon multiplier tube Most tabletop two-photon systems have the detector really close to the sample
What are the two types of scanning mechanisms used in two-photon microscopy? Which one is more appropriate for the miniscope?	 Miniturized scanning mechanisms Piezoelectric bender for fiber scanning - Not very stable Microelectrical mechanical scanner - More stable, easier to integrate to a miniscope
What are the main learning points from the history of 2-photon microscopy?	 History 2-photon miniscope Helmchen (2001) - 25 g 2P miniscope Sawinski (2009) - 5.5 g 2P miniscope - Too heavy for mice, but suitable for rats Piyawattanametha (2009) - 2.9 g - 2 P MEMS device for scanning Zong (2017) - 2.2 g - 2 P - Flexible optic fiber bundles, higher collection efficiency and allows the animal to move around more freely Ozbay(2018) - 2.5 g - One fiber for collection and excitation, lower numerical aperture Considerations: MEMS is better suited for miniscope, high quality objective, high efficient and flexible fibers
What are the possible configurations of the miniscope?	 History 1-photon miniscope Flusberg (2008) - 1.1 g, Good enough signal Ghosh et all (2011) - Simplified fluorescen microscope, CMOS sensor, LED excitation; Open source Inscopix - 100.000 dollars UCLA miniscope - Less than 1500 dollars 1 photon miniscope configurations Superficial imaging - GRIN (Gradient refractive index lenses) objective touches the brain

	Deep imaging - Relay (long lens) is inserted into the brain
What are the currently available miniscopes?	Review - Aharoni & Hoogland
	FinchScope miniScope UCLA Miniscope CHEndoscope NINscope
	Dim: 10 x 6 x 21 mm Dim: 12 x 12 x 22 x 0 mm Dim: 15 x 13 x 22.5 mm Dim: 15 9 x 17 x 32.5 mm Dim: 11 x 11 x 11 x 18 mm Wired: 1.8 gram Wired: 2.4 gram Wired: 2.4 gram Wired: - 3 gram Wired: 4.5 gram Wired: 1.6 gram Wireless: - 4 gram FOV: 1.1 x 1.1 mm Wire-free: 4.5 gram FOV: - 500 µm across FOV: 00 µm FOV: 880 x 600 µm Frame Rate: 10 Hz FOV: 700 x 450 µm Frame Rate: 20 Hz Frame Rate: 30-120 H Frame Rate: 30 Hz Focus: turret DAQ: Opal Kelly Focus: linear slider DAQ: direct to PC Software: Min & Built-in: G-sensor, opt Software: MacOS Software: Win Software: Win Software: Win & Built-in: G-sensor, opt Software: Win & Built-in: G-sensor, opt
	CHEndoscope - everything is 3D printed, easier to implement
Define some practical considerations when acquiring/processin g data from the miniscope.	 Practical considerations Interface DAQ hardware - Integrates via USB3.0 (it is better to use a laptop instead of tower PC, mobility) D-mannitol - increases extracellular space, increase spread of virus Also decrease brain pressure during Motion-correction a c c c c c c c c c c c c c c c c c c c

NINscope over other miniscopes?	 Optogenetic LED driver 2 scopes + 1 webcam Image: Comparison of the experiment of the ex
	Example data: synchronous activity between cerebellum and cortex Within Across no A arrow of the post of the pre-time from SP onset (s) Time from SP onset (s) Time from SP onset (s) Time from SP onset (s) the post of the
What is the future of miniscopes?	 Future of miniscopes Tunable lenses - Define focal depth in software Dual-color miniscopes - Two fluorescent GECIs could be used 3D printed optics -> further miniaturization Lensless system -> Detect surface for the entire cortex

Single vesicle imaging (Ruud Toonen)

	Epifluorescence TIRF
	 Secretory cell Fluorescently-labeled vesicle Evanescent field Excitation light Excitation light
	 part of the sample (depends on the angle of excitating light) Evanescent field - Exponential decrease of light gradient in the sample
What is Snell's Law?	 Snell's Law The speed of light depends on the medium it travels through n₁ sin θ₁ = n₂ sin θ₂ From high refractive index to low refractive index - Velocity increases, bend away from normal Air n₂ θ₂ defendent n₁ water Diamonds have the highest refractive index - 2.4
What is the critical angle?	 Critical angle - Angle at which total reflection occurs Living cells' refractive index depends on the organelle configuration inside it (average = 1.38) Glass slip - 1.51 cells Cells Cells Cells Glass/cell 1.35/1.518 ±63° This is the same principle used in fiber communication
What is an evanescent	Evanescent wave

wave? Why	Evanescent Wave Exponential Intensity Decay
is it useful	Figure 2 Evanescent Wave
for microscopy?	Aqueous Buffer Phase (n = 1.33)
	Glass Phase Reflected Collimated (n = 1.518) Laser Illumination
	 Penetratio depth depends on Wavelength - Violet light penetrates more than red light Angle Refractive index difference Remember that membrane is not completely juxtaposed to the glass slip - Fluorescent vesicles in the same relative position to the glass slip might have different distances to the membrane Changes in intensity in Z-axis is in the order of nanometer
How does	Confocal vs TIRF
the resolution of TIRF compare to normal confocal microscopy?	 confocal TIRFM do for the same, Z resolution is the same, Z resolution is ten times better than confocal
What are the two possible TIRF setups?	TIRF setups

	TIRFM Instrument Configurations
	Laser Prism Specimen Figure 3
	 Reflected Specimen Cover Slip Objective Light Through Objective with a prism on top of the cell shining a
	 Crude - Roman objective, while a prism on top of the cen, shining a laser at the critical angle Modern - Objective with very high NA, laser light is sent through the objective; Only a small percentage of the objective is used, so a very strong laser needs to be used
What are the advantages of TIRF?	 Advantages of TIRF Very high axial resolution Changes in fluorescent intensity correlate with Z distance from the glass slip Very high signal to noise ratio and minimal photobleaching - only a few fluorophores are excited at a time High acquisition rate - 2000 frames a second
Which types of phenomena can be studied with TIRF?	 Example Time (ms) -342 -17 +17 +50 +204 Goldfish bipolar cells - Neuron with only one axon and one giant synapse (which also makes a synapse on the glass cover slip) Study concluded there were four active zone (regions in which the vesicles fused) Up to this date, there are no other model neurons that work! Only goldfish bipolar cells.
	 Dynamic microtubules regulate dendritic spine morphology Label of plus ends of microtubules - They infiltrate the dendritic spine Debunked hypothesis that vesicles switched from kinesin to myo5 transport Neurons can grow on glass cover slips, but a lot slower than with glia cells If you grow neurons with glia, if it difficult to be sure if you are visualizing neurons of glia

Calcium Imaging I - Visualizing structure and function of developing synapses (Christian Leveelt)

Which techniques can you use to label neurons with fluorescent dyes?	 Labeling neurons with fluorescent dyes Single cell electroporation - Oregon Green Bapta-1; Alexa 594 Cre-lox system - Used to express genes in specific populations of neurons
What is the Supernova system?	Supernova system Supernova X (SnX): sparse labeling & KO Vector 1 TRE Comparison of the provide dement Vector 2 Comparison by TRE leakage (1) Stochastic Cre expression by TRE leakage (2) Overexpression of Cre and protein X by tTA-TRE cycles (2) Overexpression of Cre and protein X by tTA-TRE cycles I f you label less neurons, the signal intensity goes down, signal to noise ratio increases Solution: Tetracyclin is fed to the animal to activate Cre (problems - sparese labeling & cells without cre also express fluorescence); Couple with tetracyclin transactivator (positive feedback loop -> increases fluorescence)
What is the principle behind using rabies virus to label networks?	Labeling network with rabies virus

Which techniques can you use to label whole networks?	Labeling entire networks Bolus loading Transgenic mice Viral injections
Which one is better: OGB1 or OGB2? Why?	 Choice of indicators and quantification Oregon Green BAPTA 1 - Kd: 170 nM (high affinity, senses calcium at low concentrations, saturates quickly at lower concentrations of Ca2+) Resting Ca2+ concentration in the cytosol of neurons - 50-100 nM Oregon Green BAPTA 2 - Lower affinity, takes more calcium before it saturates Lower impact on endogenous buffer Ca2+ Linear representation of amplitude Better kinetics at higher concentrations Oregon Green BAPTA 1 Oregon Green BAPTA 2 - Lower affinity, takes more calcium before it saturates Lower impact on endogenous buffer Ca2+ Linear representation of amplitude Better kinetics at higher concentrations Oregon Green BAPTA 1 Oregon Green BAPTA 2
What the currently available types of genetically encoded calcium indicators?	 Genetically encoded calcium indicators GCaMP3 - High coeffient (the signal is non-linear) GCaMP6 - Slow (best signal to noise, slow temporal resolution); fast (worst signal to noise, better temporal resolution) ¹ action OGB1 ^{GCaMP3} ^{GCaM3}

Super-resolution microscopy - Mapping and tracking protein distributions in neurons (Harold D. MacGillavry)

Active transport in *C. elegans* sensory neurons (Jaap van Krugten)

Why is <i>C.</i> <i>elegans</i> a good model organism for neuroscience?	 C. Elegans as a model organism C. elegans, DIC I mm long, 952 cells; 302 neurons Transparent body Known genome, cell cycle and connectome Fast life cycle - Adult worms in four days Easy maintenance, able to freeze for years
What are cillia? How many <i>C</i> . <i>elegans</i> neurons are ciliated?	Cilium - hair-like structure or organelle extending from the surface Motile cilium Non-motile cilium Motile cilium Non-motile cilium Motile cilium - Motor function Non-motile (primary) cilium - Sensory function From to 302 neurons, 60 are ciliated
What are the roles of cilia in <i>C. elegans</i> ?	Cilia are found at the tips of sensory neurons
Describe the roles of kinesin-II, OSM-3 and dynein in building the cilium.	 Cilium is built and maintained by IFT (intraflagellar transport) Middle segment - Microtubule doublet (A and B) Distal segment - Microtubule singlet (A)

	EMCCD (electron multiplier) - Good to reduce dark noise CMOS tend to be less sensitive, though higher in framerate Laser alignment is very difficult -> you need two mirrors to precisely direct the beam Beam expander - Necessary to increase the diameter of the beam 1/4 waveplate - Serves to polarize the light, increase range of detection Optosplit - Dichroic mirrors that separate light before they reach the detector
What are some practical consideration in the use of <i>C. elegans</i> - as opposed to fixed tissue?	 Practical considerations of fluorescent imaging of living sample Endogenous expression (MoSCI/CRISPR-Cas9) -> one to one expression; more difficult, take longer than overexpression Overexpression (injection/transfection) -> lots of copies of fluorescent proteins; not adaquete for transport studies (excess proteins disrupt the dynamics) Tissue is not fixed - Anaesthesia is important to keep the worms still (placed on top of a agarose pad) Anaesthetic Anaesthesized worms on agar pad
Why is TIRF not a feasible technique for <i>C. elegans</i> ?	 C. Elegans is a round, not flatworm TIRF is not possible (evanescent wave is only two hundred nanometers thick)
What can be learned when using a <i>C.</i> <i>elegans</i> as a model organism?	 What can we learn with this technique? Track and quantify movement of proteins in living organisms Example research (not on exam) IFT-Dyenin tagged with GFP - Dyenin goes out of the distal segment once the repelent is added in the medium OCR-2 tagged with GFP - Unchanged once repelent is added Violin plot