1 - Basic statistical concepts and data exploration

Describe the five steps of the research cycle.	Empirical research cycle
,	1) Observation - Start with a question
	An observation is not enough to conclude anything - Biases
	intrinsic to humans, no control group
	The question defines the scope of the investigation 2) Generate theory - Makes predictions about future observations Serves as a framework for your statiscal model 3) Generate hypothesis Specific and falsifiable 4) Collect data Increase or decrease confidence in the theory No single data set can confirm or disprove a theory 4.A - Explore your data before analysing it (data entry is prone to error) Graphs and frequency distributions (histograms)
	5) Test hypothesis - Is there a significant association between two or more variables
	Image: Display state of the original state of the origina
	Collect Data Identify and measure appropriate variables relevant to hypothesis Example:

	Research question:
	Do boys and girls differ with respect to hair color?
	Theory:
	If hair color genes are on the X chromosome, sex differences would be expected
	Hypothesis: (2-sided)
	H ₀ : Boys and girls <i>do not differ</i> in the proportions with each hair color
	H _A : Boys and girls <i>differ</i> in the proportions with each hair color
What are the two types of study design? What is	Types of study design
their main difference?	Non-experimental : Observational, non-invasive, cannot infer causation Experimental : Manipulation of variables, can infer causation
What is a dataset?	Variable: Things that vary in a scientific investigation Dataset: Multiple variables
What are the two variable	Types of variables:
types?	Independent - Predictor (cause)
	Dependent - Outcome (effect)
What are the types of	Measure data
qualitative data?	Qualitative: Categorical (nominal or ordinal)
quantative autav	Quantitative: Continous (ratio or interval)
What are the types of	Qualitative. Continious (ratio or interval)
quantitative data?	Interval - You can add and subtract, but not multiply. There is
qualititative data.	no absolute zero
	Ratio - There is an absolute zero
	Kato - There is all absolute zero
	All data could be measured in a discrete or continuous way
	Numbers in categorical data are arbitrary
	Numbers in categorical data are arbitrary
	Measurement errors should always be considered in the data interpretation
What does sum of	
squares, variance and	Descriptive statistics Central tendency
standard deviation	Mode (nominal) - Highest frequency
describe?	Median (ordinal) - Middle value after ranking
uescribe.	Mean/avarege
What is range?	manarce
mat 15 range:	Dispersion
	Variance - Mean deviation from the mean
	Needs to be square in order not to be zero
	Standard deviation - Square root of variance
	N -1 due to degree of freedom (you already know the
	mean)
	

What is the simplest	Image: A set of the			
statistical model?	Outcome = model + error Simplest model = mean + standard deviation/error har = har			
What is systematic and unsystematic variation?	Variance - Describes the spread of distributions Systematic - Due to known/manipulated factors Unsystematic - Due to unknown/random factors			
How do you know a sample is representative?	 Sampling theory - If we could collect all data, we would not need inferential statistics Sample estimates represent population parameters - There is an inherent variability inherent in sampling How do you know a sample is representative? Standard error = Variation in the sample means When it is large enough (over 30), sampling distribution is normal SD - Within 1 samples SE - Within multiple samples in the population 			
What is a test statistic?	Test statistic - Ratio of systematic to unsystematic variance Proportions between groups - Chi-squared Linear association			

	Comparation of means			
What are the parameters of a standard normal distribution	Distribution of the data Parameters of a standard normal distribution 68% within 1 SD 95% within 2 SD 99.7% within 3 SD Mean = 0 SD = 1 $\int_{0.1\%}^{0} \frac{1}{2.1\%} \int_{13.6\%}^{0} \frac{1}{13.6\%} \int_{13.6\%}^{2.1\%} \frac{1}{13.6\%} \int_{13.6\%}^{2.1\%} \frac{1}{13.6\%} \int_{13.6\%}^{2.1\%} \frac{1}{13.6\%} \int_{13.6\%}^{1} \frac{1}{10.2\%} \int_{10.2\%}^{1} \frac{1}{10.2\%} \int_{$			
What are degrees of freedom?	Degrees of freedom - The amount of information you have to calculate a test statistic while accounting for the amount of information you are trying to estimate			
What is the p-value? What is alpha?	Null hypothesis: H0 Alternative hypothesis (usually two-sided): H1 What should the data look like if H0 was true? P-value = If H0 was true, what is the chance that this observation occurred? Alpha = Usually .05 P < alpha = Our result is unlikely under H0 (reject null hypothesis) P > alpha = Our result is likely under H0 (not reject null hypothesis) P = alpha?			
What is beta? Differentiate type I and type II erros	Alpha = Chance to accept a not real effect as present (detect non- existing effect) Beta = Chance to dismiss real defect as absent (not detect an existing effect) Type I error = alpha Type II error = beta			

	We say There is There isn't There is an effect on effect an effect I' I'me There isn't Type an effect I'me I'me an effect I'me
	Effect size - Pearson's r or Cohen's d
	Common assumptions Parametric test - Observations are independent - Data is measured at a interval/ratio level - Normally distributed - Equal variance between groups Non-parametric test - Ordinal data
What is a leptokurtic curve? And a platykurtic?	Skewness and kurtosis Leptokurtic(pointy)/platykurtic (flat) kurtosis leptokurtic platykurtic (e) Platykurtic and leptokurtic
	Positive or negative skew skewness positive skew negative skew
What are outliers? What is their relation to the standard deviation?	Outliers - Improbably large or small observations 3 SD from the mean
	How to report study results Design and sample characteristics N Mean SD

	Test statistic/p-value Effect size			
What is the chi-squared formula?	Chi-squared test - Difference in proportion in nominal variables H0 - There is no difference between different groups			
How do you calculate the degrees of freedom in a chi-squared test?	Example: Colour hair in boys and girls Expected value = marginal values (total) $expected = \frac{marg(a)*marg(b)}{total} e^{4}$ Example - Expected chance of a blonde boy (22 * 28 / 47) $blond \ 16 \ 12 \ 28 \ 13 \ 19 \ 19 \ 10.11 \ 14.89 \ 19 \ 10.11 \ 14.89 \ 19 \ 10.11 \ 19 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ $			

Sophie Van der Sluis (s.vander.sluis@vu.nl)

Goals: Form opinions independent of others; formulate own research questions

Statiscal techiniques are stable over time

You have to think about statistics before designing the experiment

6 Sessions - Lectures, practicals, assignments, self-study You have to pass all the assignments to be able to do the exam

Exam - Multiple choice and open-ended Presentation - 10% of the grade

Review week 1 Sampling theory - Inferential statistics

- We cannot collect data about the entire population
- If we get enough samples The sampling distribution will be a normal curve
 - Sampling mean = Standard error (standard distribution divided by the squared root of the sample)
- Sampling theory applies to other parameters (e.g. difference between populations, linear associations)
- Central limit theorem If you have a large sample, it is more likely to be representative of the population (it does not mean that the population itself has a normal distribution)
 - Small samples are more likely not to be representative of the population (due to random chance)
- Test statistics Effect size (ratio of systematic to unsystematic variability)
 - Sampling variability = effect size, express uncertainty (Z, t, F)
- Confidence intervals Known distributional properties used to express uncertainty around an estimate
 - Z-score = x mean divided by standard deviation
- Bootstrapping confidence intervals Construct your own confidence intervals based on your own data
 - 1000 subsamples is the standard
 - $\circ~$ Cut off top and bottom 2.5%
 - o Remaining highest and lowest values are bootstrapped confidence
- Kolmogorov-S and Shapiro-W Difference between your distribution and a theorical distribution
 - KS Any theorical distribution
 - SW Only normal distributions (more reliable for small and medium samples)
- Chi-squared Margins take initial differences into account

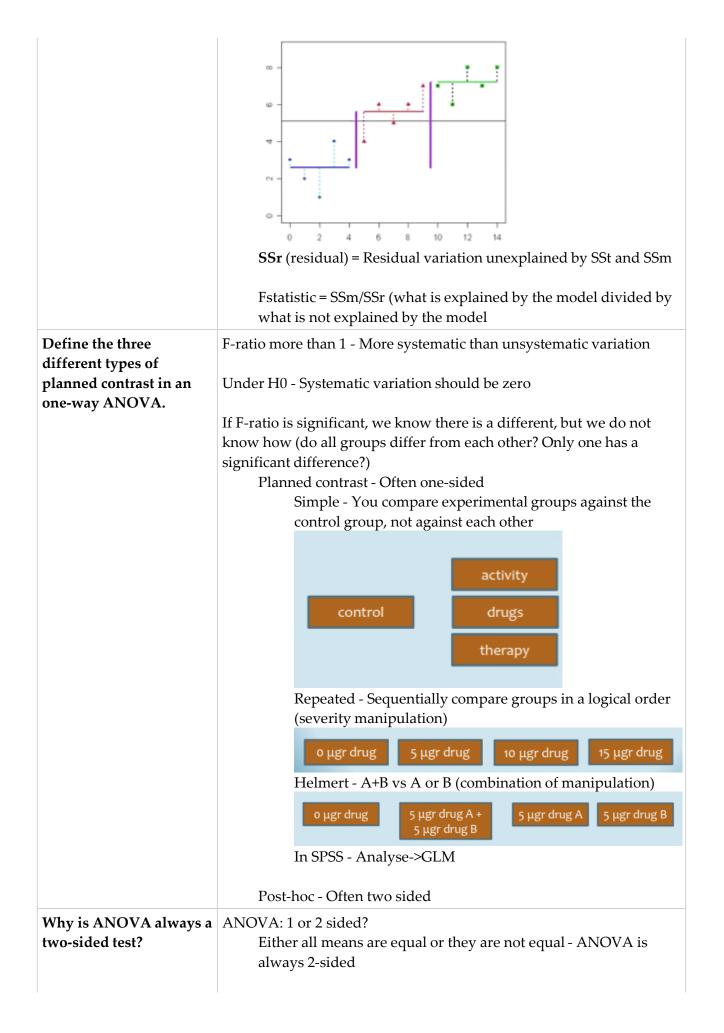
2 - Correlation and Regression

What is the main difference between correlation and regression?	Linear association between two or more variables Correlation - Non-directional Regression - Direction They have more information than a pure means model			
Why correlation does not imply causation?	Correlation - Strength and direction of variation between two variables Values between +1 and -1			
	Positive			
	Correlation = 0Correlation = .65Correlation = 1Negative 0			
	Does not equal causation - Third cause			
How to calculate Pearson`s correlation? When to use, instead of Spearman?	Pearson's correlation rho Standardized covariance			
How can you make the correlation result not scale dependent?	Calculation: Same as variance, but multiplying x by y instead of squaring it Covariance(x, y) = $\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N-1}$ Scale dependent - Cannot compare studies unless they are using the same units of me Solution - Divide this by standard deviation (correlation coefficient, not scale dependent) $z = \frac{x - \bar{x}}{s}$ Values are between +1 and -1			
What is the difference between R and R squared?	Correlation significance R is a standardized effect - Not a normal distribution (converted Z or t test) R squared is an indication of how much variability in one			

	variable is explaine	d by a	nother				
What are the assumptions for Pearson correlation?	Assumptions for Pearson Relations are linear Variables are bivariate normally Homoscedasticity of variances (similar variances between samples)						
How to calculate Spearmans' correlation? When to use it over Pearson's?	Spearmans' correlation rho Two ordinal variables or one ordinal and one interval/ratio Does not use scores, but ranks = Scale independent Calculation: Differences between ranks Squared differences between ranks						
		educ	IQ	Educ_r	IQ_r	diff	diff ²
	Rank scores	5	121	5	6	1	1
	within variables	3	104	3	3	0	0
		2	78	2	1	1	1
		4	107	4	4	0	0
		1	85	1	2	1	1
		6	145	6	7	1	1
		7	120	7	5	2	4
	$\rho = 1 - \frac{6\sum diff^2}{n(n^2 - 1)} = 1 - \frac{6*(1 + 1 + 0 + 0 + 1 + 1 + 4)}{7(49 - 1)} = 1143 = .86$						
What is a common correlation hazard?	Correlational hazards Combining subground Combining subground Combining subground Significant correlat causation (tertio que	2 ions do	9	Ð	0	0	rection of
What is the difference between partial and	Partial correlations Correlation correct	ed for 1	relatio	nship wi	th a th	ird va	riable

semi-partial correlations?	PartialSemi-partialInfluence z is completely corrected for; z does no longer influences relation between x and y. Partial correlation: unique relationship between 2 variablesOnly effect z on y is controlled for. Z influences y but only through x. Semi-partial relations are useful when explaining variance in y from a set of predictors (multiple regression) y predicted from x and z; I: enter x in model (unique x-y, and part x/z-y), II: enter z in model (unique z-y)
	Other correlations Kendall's tau - Small samples and many ties between differences Bi-serail - Dichotomus variable Polychronic - Two dichotomus variables
What can a regression do that a correlation cannot?	Regression Similar to correlation, but directional (one variable predicts another) It is a predictive model
What each variable means in the linear model?	Two bits of information are sufficient to describe a linear model $Y = ax + b$ Simple Regression $y = a + b * x_i + \varepsilon_i$ residuals Score person i on variable x y^{-axis} y^{-axi

	Sty uses the differences between the observed data and the near value of Y Sty uses the differences between the observed data	
Why should we use linear models?	Why use a linear model? Simple model - More parcimonious You can predictive new values of the data	
What is the difference between simple and multiple regression?	Simple regression - Two variables (one predictor and one outcome) Multiple regression - More than two variables	
Why transforming variables does not affect the interpretation of a regression?	Transforming variables - Does not change the model or the interpretation of the data Insensitive to linear transformations Sensitive to non-linear transformations (e.g log)	
Under which circumstances are correlations and regressions the same?	Standardizing both variables = Correlation and regression is the same! B = correlation r A = 0	

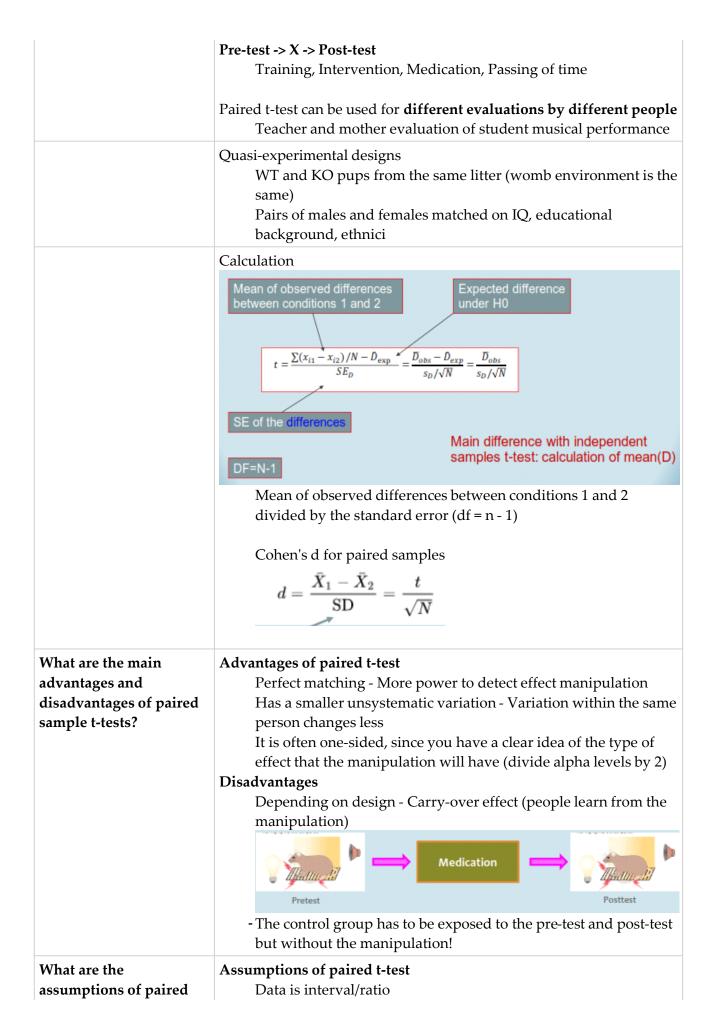

3 - Between subject designs

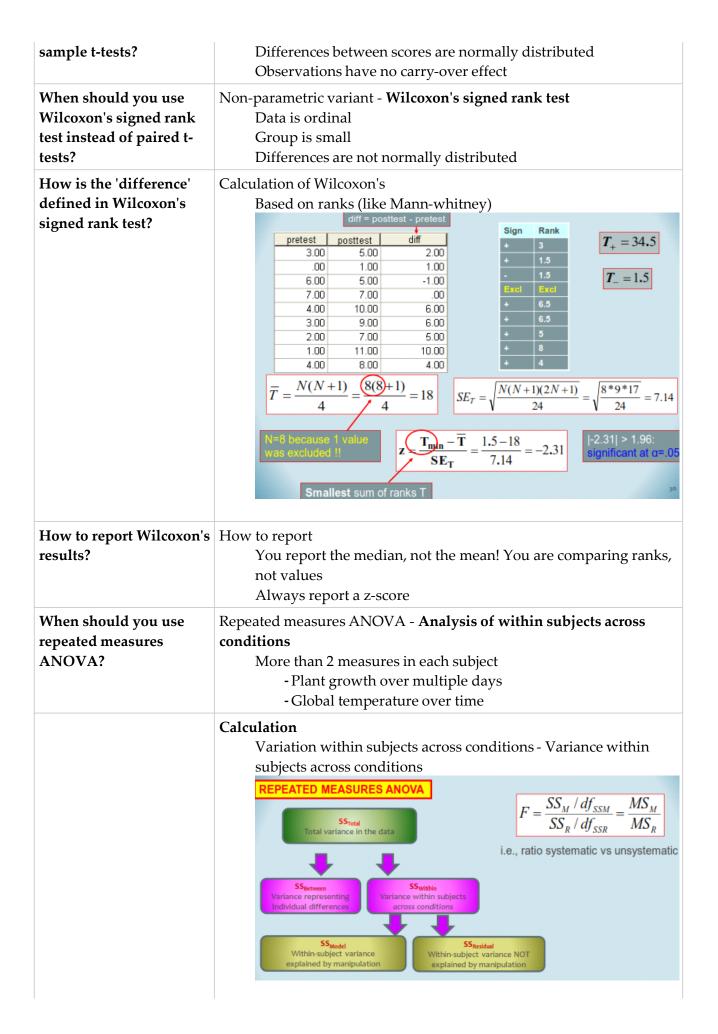
What is the difference between within subject design and between subject design?	Within subject design - Dependent, overlapping samples (same subjects are tested more than once) Between subject design - Independent, non-overlapping samples			
When should you use a t- test?	Independent sample t-test Two groups - Control and experimental groups Assumption: Difference in means can be attributed to the manipulation (causal interpretation) Random assignment			
What is the difference between experimental and quasi-experimental design?	 Experimental vs quasi-experimental Experiment - Experimental factor is manipulated by reasearcher, random assignment, control group, equivalent control and experimental group (match) Quasi-experiment - Experimental factor not manipulated by researcher, no random assignment, no real control, no match between experimental and control group 			
What is the question that a t-test tries to answer? How can systematic and unsystematic variation be observed in a distribution?	Question of t-test: Do this data come from the same population or from difference population? Answer depends on the variance Systemic vs unsystematic variation Systematic variation dynamic dyslexic controls B d d d d d d d d d d d d d d d d d d d			
What the formula for a t-	other factors outside from the experimental manipulation) Formula for t-test			

test?	Observed difference between means (<i>systematic variation</i>)
	$t = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{SE} = \frac{(X_1 - X_2)}{SE} = \frac{D}{SE}$
	Unsystematic variation: Variation observed by chance alone
	(difference between observed means) - (difference between expected means)/standard error Systematic variation/unsystematic variation - Like all test statistics
	Under H0 - the difference between expected means is 0
	Calculation of standard error If samples are equal
	$SE = \sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}$
	If samples are not equal $SE = \sqrt{\frac{s_p^2}{N_1} + \frac{s_p^2}{N_2}}, where$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$
	$(n_1 + n_2 - 2)$
Why should you report an effect size along with a t-test?	Effect size - Quantitative measure of the magnitude of a phenomenon, allows comparisons between different studies $Df = N - 2$ $r = \sqrt{\frac{t^2}{t^2 + df}}$ R= .1 (small effect) R = .3 (medium effect) R = .5 (large effect)
	It is always good to calculate the effect size and report it along with the t-test
How can you maximize the probability of observing a significant experimental effect?	How can you maximize the probability of observing a significant experimental effect? - Increase sample size - Decrease variance - Increase effect size/mean difference (the difference between the
	means between two groups)

	It is important to think about this before collecting data (during the experimental design)
What is the interpretation of a and b in a regression line?	Analogy t-test - regression A = Mean value of Y when group variable is 0 B = Mean value of Y with 1 increase in group variable B is the difference between the two means
What are the assumptions of a t-test	Interpretation of b - The difference between groups 1 and 2 is significant Assumptions of t-test Data are normally distributed Data are measured at interval/ratio level Variances in two groups are roughly equal
	 Probably there was some problem in the experimental design if homoscedasticity is not met Observations are independent - Come from different subjects, not correlated between groups
What a significant Levene test indicates?	Levene test less than .05 - Variances are not equivalent between groups Then you can use equal variances not assumed

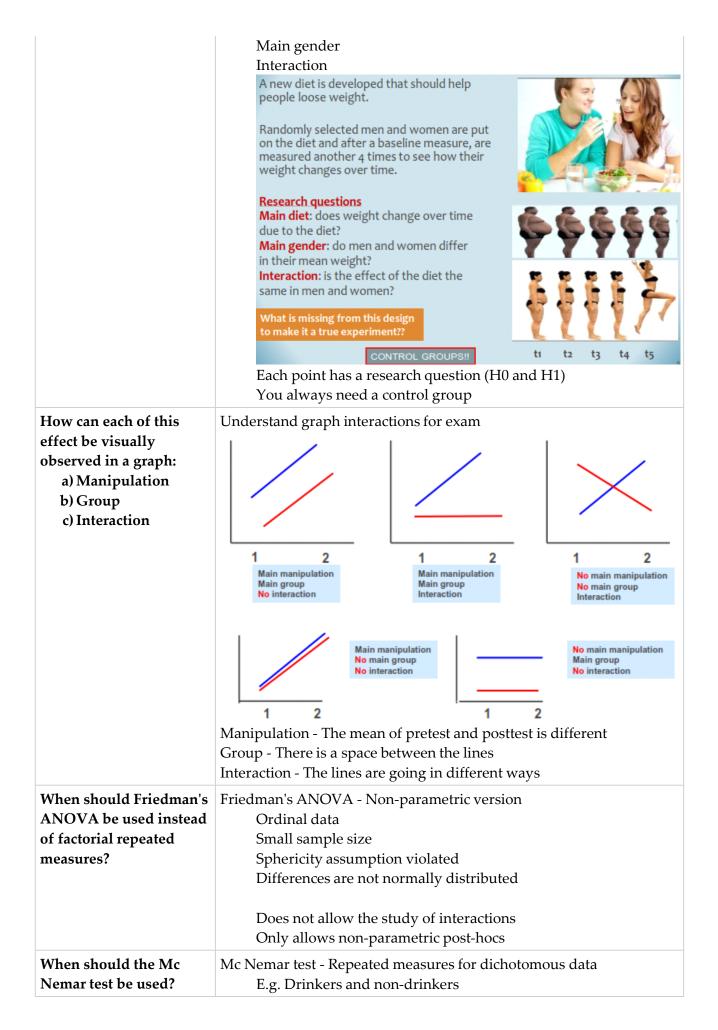
	The arithmetic capacity of children who experience reading disability (RD, N=24, M=03, SD=.79) was compared to that of chronological age controls (CA, N=24, M=.07, SD=.37). Because the variances of the two groups were significantly different (F(1,46)=10.05, p < .01), a t-test for unequal variances was conducted. This test was not significant (t(32.71)=.54, ns, r = .09, Cohen's d=.26). In other words, no difference in arithmetic capacity between RDs and CAs could be detected.
When should you use an one-way ANOVA?	One-way ANOVA Compares more than two means When you manipulate one or multiple variables - e.g. Control, KO, double KO One dependent variable = one independent variable with 3 or more levels
Why dummy coding is	Explained in terms of regression
used in an one-way	Y = a + bG + b2G2 (dummy coding) Three groups: multiple regression
ANOVA?	$y_i = a + b_1G_{i1} + b_2G_{i2} + \varepsilon_i$ $Group 1: y_i = a + \varepsilon_i$ $Group 2: y_i = a + b_1 + \varepsilon_i$ $Group 3: y_i = a + b_2 + \varepsilon_i$ Each level of the dichotomous variable is contrasted to a reference level
Define SSt, SSm and SSr.	Means for each group
What is the formula of a	SSt (total) = Total sum of means (ignores group)
f-statistic?	$\int_{0}^{0} \int_{0}^{0} \int_$




	Post-hoc tests - Can be one-sided Manipulation groups in depression - A manipulation cannot increase depression levels		
What are the assumption for an ANOVA	Assumptions for ANOVA Dependent variable is normally distributed Equal variance in each group Independence observations		
When should you use a factorial ANOVA?	Factorial ANOVA (2-way, 3-way) Multiple means and multiple predictors E.g. Control vs drug; Home vs clinique; male vs female Two-way ANOVA - Diet1/Diet2/no diet; male/female (Image) Interpretation Main effect diet - Across two gender groups Main effect sex- Across all dietary conditions Interaction diet vs sex - The effect of manipulation is the same in all groups?		
How can you visually determine if there is an effect of the manipulation, an effect of the group and an effect of the interaction?	Interpretation interaction No main effect manipulation No Main effect group No interaction No diet Diet		
	1 2 Main manipulation Main group No interaction 1 2 No main group Interaction No main group Interaction No main group Interaction		
	Main manipulation No main group No interaction No main manipulation Main group No interaction 1 2 1 2		
When should you use a non-parametric equivalent of ANOVA?	Parametric vs non-parametric Parametric - Assumptions about distribution of the data, for interval and ratio data Non-parametric - For data with outliers that you do not want to		

remove; N is small - If your distribution is normal, some argue that you should use a t-test
--

4 - Within subject design


When should you use	Within subject - Multiple measures on the same subject	
paired sample t-test over normal t-tests?	Independent sample t-test Systematic variation - Caused by the manipulation Unsystematic variation - Not caused by the manipulation (observations at different times, genetic variability of mice) Cohen's d = Effect size for mean difference between two groups	
	T-test cannot be used when the samples are not independent	
Under which circumstances should paired samples t-test be	Paired samples t-test Same people in every condition -> Change is due to a manipulation	
used?	tigControl groupExperimental groupImage: Section of the same brain region One has a manipulation, one has notImage: Section of the same brain region One has a manipulation, one has not	

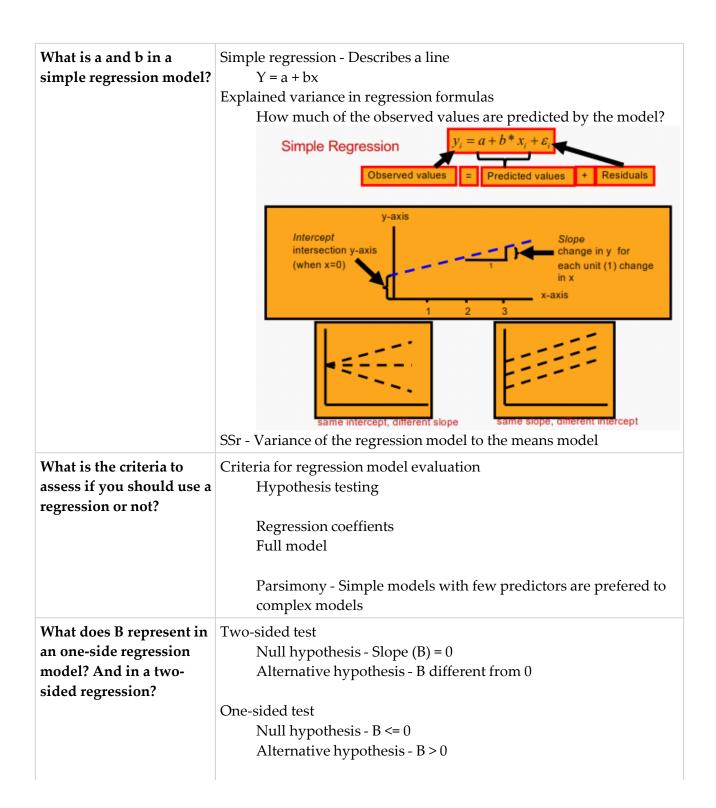
Statistics in Neuroscience Page 3

Assignment review

Multiple groups - N, mean and standard deviation for each

Always check assumption before running the analysis

Report df, test statistics and p-value


F-test has two p-values - Report both (degrees of freedom of model and the distribution)

SSt = n - 1 SSr = N - k

SSm = k - 1

Always explicitily state research question, H0 and H1

5 - Multiple regression

	$ \begin{array}{c} $		
What does an F-test	F-test		
represent?	Ratio improvement of regression model compared to means model		
	$F = \frac{MS_M}{MS_R} = \frac{SS_M / df_M}{SS_R / df_R} = \frac{(SS_T - SS_R) / df_M}{SS_R / df_R}$		
	Explained vs non-explained		
Why is an adjusted R	Example on SPSS		
squared important to be reported?	 Arithmetic ability based on Raven task? Adjusted R squared - As you add more predictors to the model, r squared tend to increase on its own B - constant (a), intercept Beta coefficient - for every increase of x, how much is the increase of y (standardized in stardard deviations) 		
	How to report a regression		
	Arithmetic ability and IQ were measured in 170 children. Arithmetic ability was measured on a scale ranging from to (Ma, SDa); Raven was measured on (Miq, SDiq). Aim of the study: to investigate whether IQ significantly predicts arithmetic ability. To this end, a regression analysis was run with arithmetic ability as dependent variable, and IQ as predictor. The F-statistic was significant (F(1,168)=15.87, $p < .001$), implying that Both the intercept and the regression weight for IQ were significant (t(168)=6.03, $p < .001$, t(168)=3.98, $p < .001$, respectively). The resulting equation thus looks as follows:		
	Arithi = 74.17 + 1.145*Raveni + εί		
	Correlation Raven-Arith was .29, and R ² equalled .09 (adjusted R ² was), meaning that		
	Inspection of the standardized residuals shows that less than 2% > 2.58 , and < 5% > 1.96 , implying that		
What are the implicit and	Implicit assumptions for regression		
explicit assumptions to	Predictor is quantitative or categorical with 2 levels		
perform a regression?	Dependent variable is continous		
	No perfect multicollinearity between predictors		
	Predictors are not correlated with external variable		
	Explicit assumptions for regression		
	Linearity - Always assess this with a scatter plot		
	Independent observations - No repeated observations from the		

	same subject, no hierarchical organization in subjects/animals Durbin-Watson test Graph residuals can identify gross deviation Homoscedasticity - Variation outcome should be constant across predictor range Boxplot Normal residuals - Mean equals 0 If violated: Non-parametric testing
	Outliers can influence regression model Very simple to assess with a scatterplot – ALWAYS look at this before analysis If violated: transform variable(s) or use alternative (non-linear) regression model
	- Checking for outliers is very important in regression analysis - Always make a scatterplot of the data
If regression and correlation are the same thing, why do regressions at all?	Why bother with regression? Mathematically, regression and correlation are the same Conceptually, you frame them differently (regression provides a scalable framework)
What is a multiple regression?	Multiple regression More complex questions require more complex models Y = b0 + b1X1 + b2X2 + b3X3
What is R-squared?	R squared - percentage of variability explained by all predictors
What are the different types of predictors entry for multiple regressions?	Enter mode - All predictors entered in the equation at once (no order) Hierarchical regression - Order of predictors is chosen by experimenter Stepwise - Decided by the computater (which generates largest R squared) Forward - Improve R square by adding predictor Reverse - Improve R square by removing predictors
How to deal with	How to deal with categorical variables?
categorical variables in a multiple regression?	Means model Regression model

categorical variables in a multiple regression?	Means model	Regre	ession n	nodel	
	More than two	Indicator va be coverted variables- D	riable (0 an into a reg ummy coo	ression model	levels
What is dummy coding?	What if effect of pred - Interaction is de	-	U	-	
	Condition	X1	X2	X3	
	No intervention	0	0	0	
	Placebo	1	0	0	
	Old drug	0	1	0	
	New drug	0	0	1	
	Main e Beta predia are a Remo	unstandardize B 33.403 e: miles per gallon pt (H ₀ : b ₀ : ffects (H ₀ : & Std. beta c ctors, so coel dded/remove	efficients ^a ad Coefficients Std. Error 2.837 .395 1.463 = 0) $b_1=0 / b_2$ ontrol for e ficients will d from the	Standardized Coefficients Beta t 11.776 690 -5.919 .265 2.276 ==0) ffects of other change when the	
What are the assumptions of multiple	Assumptions for mul Linearity	tiple regress	sions		

regressions?	Independent observations Homocedasticity Normal residuals No perfect multicollinearity
What is Variance Inflation Factor? From which value should you consider removing a variable?	 Very large correlation between covariates is problematic Variance Inflation Factor (VIF) is measure to estimate how redundant each covariate in your regression is It performs a regression with one covariate as outcome and all other covariates as predictors [VIF = 1 / (1-R²)] VIF = 1: uncorrelated with all other covariates in the original regression (R²=0) VIF > 5: very correlated; consider removing this variable (R²>0.8) VIF > 10: extremely correlated; you probably should remove this variable (R²>0.9) Each predictor has its own VIF; if necessary remove variable with highest VIF and recompute.
What is a familywise error?	The more tests you do, the more likely you are to get a false positive Setting alpha (probability to reject the null hypothesis even though it was true = type I error) Familywise error = 1 - 0.95(n) 10 tests = 40% In neuroscience, many designs are characterized by many tests Proteomics Genomics Metabolomics
What are the classes of correction for familywise error?	Classes of correction Family-wise error rate (FWER) False discovery rate (FDR) False discovery proportion (FDP)
What is the difference between Bonferroni correction and Holm correction?	 Familywise error rate - Bonferroni correction - Divide alpha by the number of tests Often too conservative when p-values are correlated Holm - Sort the p-values sequentially, than define the critical value for each p-value (ai = m-i+1) Less conservative in Bonferroni Tukey - Similar to Holm (put p-values in order)
What is false discovery rate?	False discovery rate FDR - Hits by chance alone and hits observed -> Ratio Benjamini & Hochberg Read Verhoeven (2005) 'm' - Control for the number of hypothesis

Errata - Effect size (Z-score/square root of N) N is the total number of observations in the study

Normality tests - Always report df, test statistic and p-value Always report the specific p-value

4.1.

The two hypothesis (null and alternative) need to cover all the possible outcomes

The differences should be normally distributed

Rsquared =

Always report effect size

4.2

Weight of three strains of mice

- Main weight The weight changes across time
- Strain Do the strain differs in weight
- Interaction Do the strains gain weight in different ammounts

Always report all the effects You don't do a post-hoc test if your effect is not significant

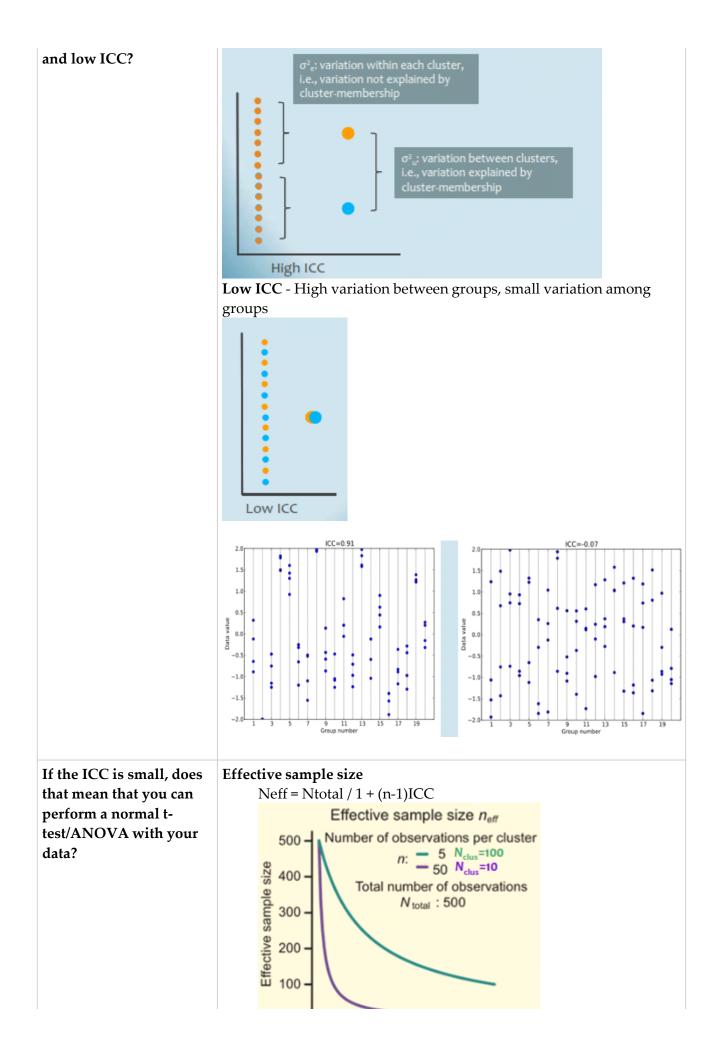
4.3

DBP in increasingly stressful conditions Always report the groups, time points, what is being tested (N, median, sd)

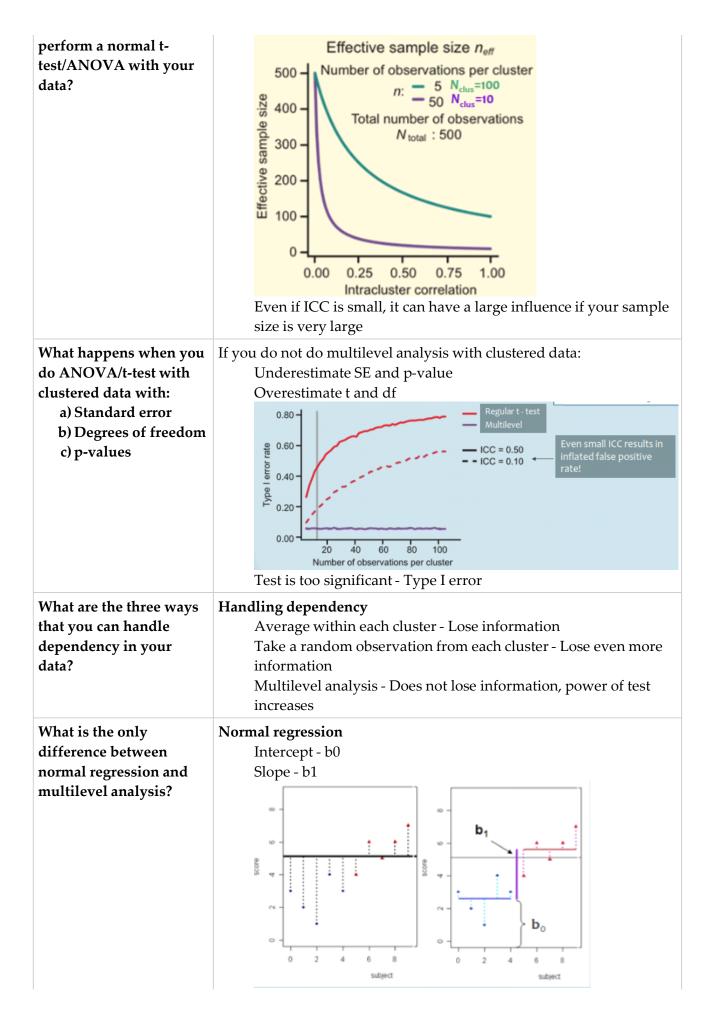
Test the normality of differences Friedman ANOVA is a chi-square and needs to be reported as such Always report effect size

Bonferroni - Related samples Tukey - Unrelated samples

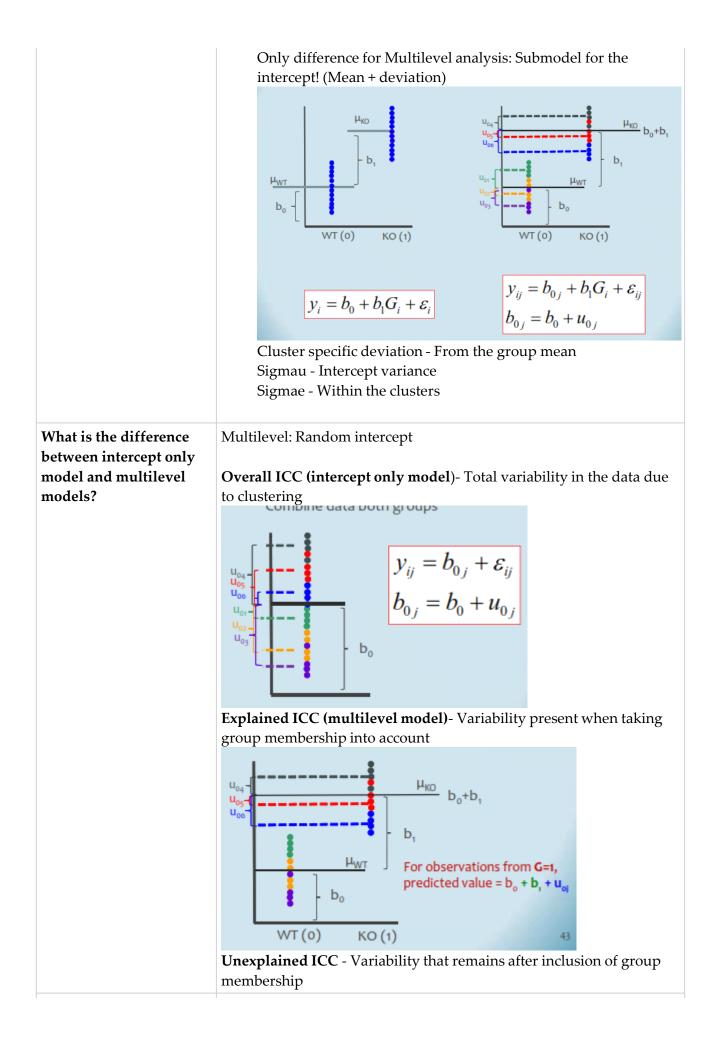
1 or 2-sided question Dictated by your hypothesis/study design


T-test/ANOVA - Two-sided

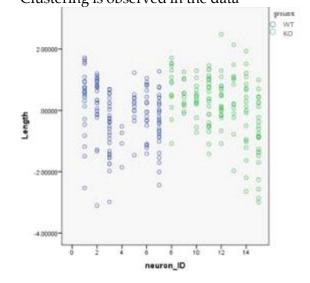
Paired t-test - One-sided

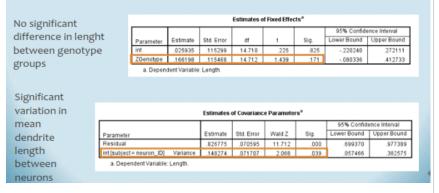

6 - Multilevel analysis, handling clustered data

What is the difference	Multilevel analysis
between longitudinal	General assumption of statistics: Data are a random sample from
data and clustered data?	the population and the population
	1. Longitudinal data - Dependency over time (paired t-tests) 2. Clustered data - Data are not randomly sampled
Why the violation of	Violating the assumption of independence
assumption of	Within the class - Scores are more alike (they are clustered),
independence creates more false positives?	dependent by design This creates a high false positive rate
What is hierarquical data?	Conceptual introduction Nested/clustered/hierarquical data - Multiple measurements of the same object - Children in the same class (child is level 1, class is level 2, school is level 3)
	Classical example: children in classes in schools Image: children in classes in schools <t< th=""></t<>
What are the two types of	Two types of nested designs
nested designs?	1) All observations from the same cluster are in the same
	experimental condition (WT) (KO)
	Observation control group Observation experimental group Research design I Neuron Observation from the same cluster can be part of different experimental conditions Research design II


	Research design II Neuron Neuron
What is the difference between observed and effective sample size?	Observed vs effective sample size 3 WT pups: 10 neurons per group 3 KO pups: 10 neurons per group Observed sample size: 60 measures
	Effective sample size: Ranges between 6-60 depends on ICC ICC: Intra-cluster correlation 0 - All samples are independent 1 - All samples convey the same information
How can clusters be visually identified in a histogram?	Density of cell membrane - Observations of the same cell are more similar to each other
What does ICC stand for? What is the formula for ICC?	ICC - Ratio of variation in the data explained by clustering/Total variation in the data $ICC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$
Visually, what is the difference between high	High ICC - Small variation between groups, large variation among groups

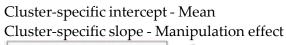
Statistics in Neuroscience Page 3

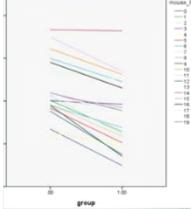

Statistics in Neuroscience Page 4


What are the two different types of research design in multilevel analysis?

Examples of research design

Dendrite length in WT and KO Clustering is observed in the data




Covariance is significant (difference between the clusters)-Multilevel model is necessary

Research design II

Multiple observation from the same mouse, part is treated with virus, other part does not have virus

Fixed effect - Same for all clusters Random effect - Different for different clusters

All neurons are stained with GFP - part is transfected with virus, part is not • Significant intercept variance • Significant slope variance Always do multilevel analysis with clustered data, even if covariance parameters are not significant
Conclusions
Clustering needs to be taken into account in statistical test
ML is just an extension regression analysis
Read more about multilevel modeling
Questions:
 What is meant by "dependent data"
• Observed versus effective sample size
• What is the ICC
 Why is multi-level modelling required if data are not
independent
• What is menat by "clustering" or "hierarchical data"?

Assignment discussion

5.1. Is sex still a predictor of ICV once height is taken into account?

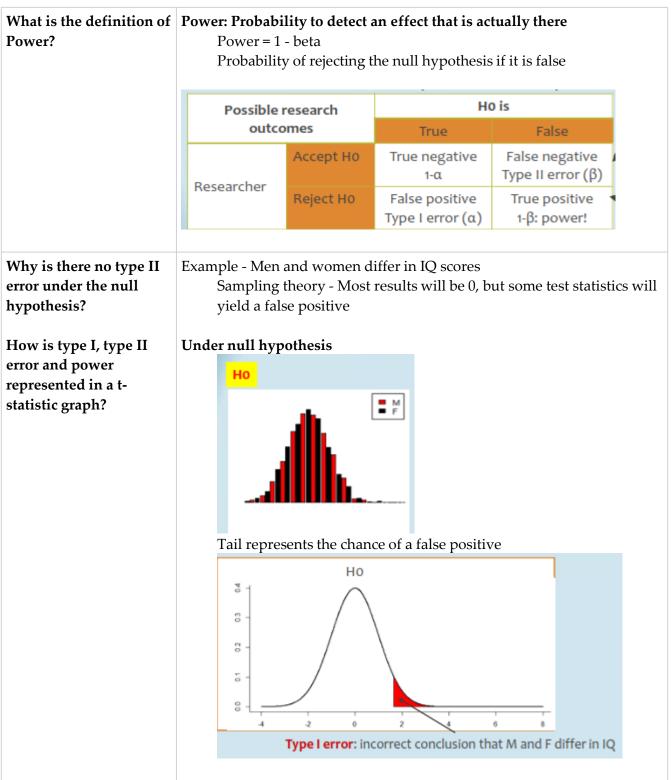
Null hypothesis - Sex does not improve the prediction once height is taken into account Alternative hypothesis - Sex does improve the prediction once height is taken into account

Check assumptions

Mean + standard deviation of groups need to be reported separately

The fact that height is not significant does not mean that you can exclude it from the model - you need to run the regression again without the variable

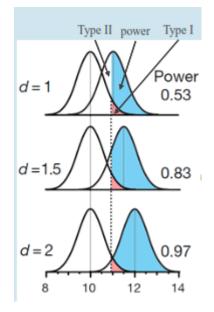
5.2. Sepal length can be predicted by petal length/width

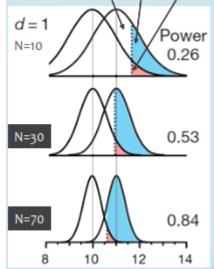

- 1. Dummy coding
 - Two groups = a + bG
 - bG = 0; intercept straight line
 - A = 0; sloped line b
 - More than two groups = a + bG1 + bG2
 - Dummy coding Compare each variable to the reference group (does not matter which one)
 - Allows an ANOVA to be performed in the context of a regression
 - B1 Group 1 from reference group
 - B2 Group 2 from reference group
- 2. Mislabelling
- 3. Check for outliers

Petal length and petal width are highly correlated - Cannot both be in the model (VIF > 18)

You must include all dummies or no dummies - you cannot include only some dummies

Hierarchical entry - You know the predictors (from literature) Stepwise entry - You do not know, you let the computer decide the best model


Two predictors - Petal length + species (do not count dummy codings individually)

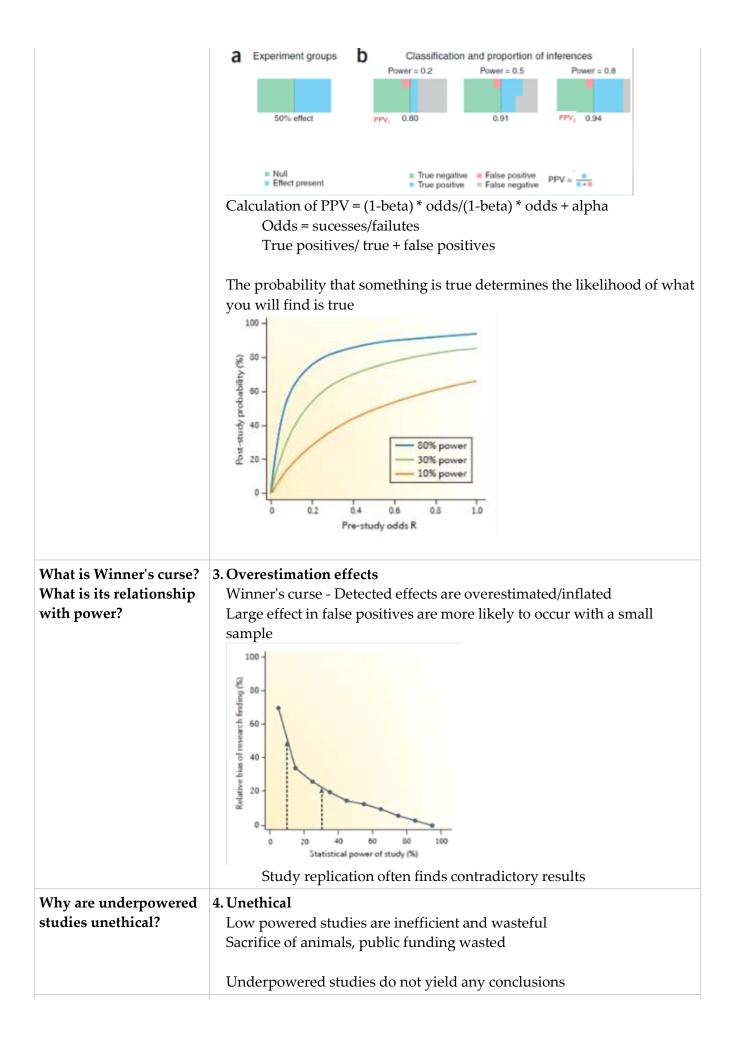

Under alternative hypothesis

	Type I error - Right tail of left curve Type II error - Left side of right curve Power - Above type I error in rightmost curve			
	Type II fout (false negative) Incorrect conclusion that M and F do not differ in IQ Type I error (false positive) incorrect conclusion that M and F differ in IQ			
	This is the distribution of t-values (test statistics - not the distribution of the data itself!)			
What is the relation between type I and type II errors?	There is an inverse relation between Type I and Type II erros If alpha gets smaller, beta gets larger			
What is sensitivity and specificity?	Sensitivity - Of all positives, how many are true positives Can you identify the sick Specificity - Of all negatives, how many are true negatives Can you identify the healthy			
What are the three ways you can increase power? How is the increase of effect size represented visually?	How to increase power? • Increasing sample size • Increasing difference between two means (effect size) • Decreasing variance			

How is the increase of sample size represented visually?

Increase sample size - Less sampling variation, more accurate estimate of the effect

The curve becomes narrower (less variation)


Decreasing noise - Control through careful matching and selection; use of a good instrument (standardized, reliable, objective, high resolution)

How is power related to the way you collect your data?

		Rarely /never	Sometimes	Occasionally	Often/always
	6) I felt depressed	0	1	2	3
	9) I thought my life had been a failure	0	1	2	3
	10) I felt fearful	0	1	2	3
	14) I felt lonely	0	1	2	3
	17) I had crying spells	0	1	2	3
	18) I felt sad	0	1	2	3
Thomas	19) I felt that people disliked me	0	1	2	3

Extreme questions - Most people will score 0, even though they do not feel equally well

	Controls = 0 Loss of a lot of information Cases = 1		
	Dichotomized data has very little power		
	Power Normal sum score Image: statistical treatments change the power of your data		
What is censoring? What are `bottom` and `ceiling` effects?	Censoring - Loss of information in your data Bottom effect - Some could not perform the task at all Ceiling effect - Some answered everything correctly		
What is the mean power of neuroscience studies? Why is that a problem?	Current state of affairs		
What is the problem with increasing false negatives due to underpowered studies?	Problems with underpowered studies 1. More false negatives a. Most research focus on minimizing false positives b. False negatives - Waste of money, effort and time; negative results cannot be interpreted as the absence of an effect		
What is PPV? What is the relation between PPV and power?	 2. Observed effects are less likely to be true a. Positive predictive value - The effect that we observed is likely to be a true effect (depends on the knowledge of the field) Shoe sizes varies between men and women - Safe hypothesis, needs very little evidence Mind-reading - Risky study, it takes a lot of evidence to convince readers 		

Conclusion Given that I want to see an effect of at least a certain size - how can I design my study A priori testing - G-power software Small power - DO not do the study or increase sample size
Questions• What is power• False positives/false negatives (the table)• Factors that affect power (e.g., N, effect size, variance: learn to interpret statistical equations (like t-test) in terms of power)• Consequences of poor power (e.g., false negatives, Winner's curse, PPV, unethical)