0. Introduction to Neuroanatomy

	We do not need to memorize every label in the Atlas Anatomy		
	Understanding is more important than tiny anatomical details		
Why the soft brain is not damaged by its pointy skull?	Foramen magnum - Entrance to Spinal cord, nerves, meninges, blood vessels		
	Brain has a very soft texture - It would get damaged by the pointy skull if it		
	was not protected		
What is the part of the	The brain and skull have a 1 to 1 spatial relationship		
a) Frontal lobe			
b) Temporal lobe c) Cerebelum	Anterior Posterior		
c) cereberum	Frontal lobe		
	Cerebellum and brainstem		
	Temporal lobe		
	Anterior fossa		
	Foramen magnum		
	sphenoid bone Middle fossa temporal bone		

What is the difference between dorsal/ventral and superior/inferior? Planes of the head **Dorsal/ventral** - Top and lower side (in humans, brain and spinal cord are in different plance because we are bipedal)

Superior and Inferior - Up and Down (absolute position)

Rostral and caudal - Nose and tail side **Anterior and posterior** - Front and Back (absolute position)

Sagital - Mid or parasagital

	<image/>
What are the three protective lavers of the	Protective layers of the brain Dura Matter
brain?	Meningeal layer Periosteal layer
	Arachnoid - Attached to the skull Bridging vein - Cross the arachnoid and Dura Matter
	Subdural hemorrhage - People get older, their brains shrink, bridging veins are more likely to rupture
	Pia Mater - Fibrous layer impermeable to fluid Maintains CSF inside the brain
	Skin
	Cranium
	Dura
	mater
	Arachnoid mater
	Pia Mater

From Molecule to Mind Page 4

1. Neurophysiology - Ions channels & Resting membrane potential

Closed channel - No signal Open channel - Baseline signal (total current equals the sum of

Transporters - Actively move ions against their concentration

$$zF^{--}[X^+]_i$$

Why is calcium concentration so low in the intracellular space?

What is the equilibrium potential for the four main ions?

In mammal temperatures and using 10-base log: 58

$$58\log_{10}\frac{[X^+]_o}{[X^+]_i}$$

Goldman equation - Includes the permeability of the membrane for different ions

$$Vm = \frac{RT}{zF} \ln \frac{P_K K_o + P_{Na} Na_o + P_{Cl} Cl_i}{P_K K_i + P_{Na} Na_i + P_{Cl} Cl_o}$$

Table - Extracellular and intracellular neuron concentration TABLE 2.1 Extracellular and Intracellular Ion Concentrations

	Concentration (mM)	
lon	Intracellular	Extracellular
Squid neuron		
Potassium (K ⁺)	400	20
Sodium (Na ⁺)	50	440
Chloride (Cl⁻)	40-150	560
Calcium (Ca ²⁺)	0.0001	10
Mammalian neuron		
Potassium (K ⁺)	140	5
Sodium (Na ⁺)	5–15	145
Chloride (Cl ⁻)	4–30	110
Calcium (Ca ²⁺)	0.0001	1–2

Calcium needs to be low because it is a **finely regulated** second messenger

Equilibrium potential of **sodium and calcium are very positive** EP of **cloride and potassium are very negative**

Potassium leaves the cell - Inside becomes negative! Na channels are closed - The membrane at rest is not very permeable to sodium

Resting membrane potential is determined by K+ gradient

Chloride concentration is very different before and after birth

GABA is an excitatory neurotransmiter because there is more chloride

The fetus brain needs mechanism to prevent oxygen shortages GABA causes depolarization in neighbouring cells

2. Cytoskeleton (chap 17)

What are the three main Things are kept in place by the cytoskeleton components of the Components of the cytoskeleton cytoskeleton? What Intermediary filaments - Joins cells together (do not cross length is their respective cells/not continuous); diameter of approximately 10 nm diameter? INTERMEDIATE FILAMENTS 25 µm 25 nm Microtubeles - Have nucleation points (centrosomes), has a spider-like look; diameter of 25 nm MICROTUBULES 25 µm 25 nm Actin filaments - Aligned along the cell membrane (cortex of the cell); diameter of 7 nm ACTIN FILAMENTS 25 µm 25 nm How are intermediary **Intermediary filaments** filaments formed? Build from very simple structures - Monomers Superstructures - Coiled-coil dimers that keeps packing What is the main Generates a rope-like structure - The fact that they are not

function of intermediary filaments?

aligned means that they have more binding sites to other structures

	tubulin molecule with bound GTP				
	GTP tubulin molecules add to end of microtubule				
	nume: ~	GTP			
	addition proceeds faster than GTP hydrolysis	tubu			
		dest			
	GTP cap				
GROWING MICROTUBULE					
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
	protofilaments containing GDP tubi peel away from the microtubule wa				
	unnung.				
	GDP tubulin is released to the cytosol				
	tubulin molecule with bound GDP				
	SHRINKING MICROTUBULE				
	This process takes a lot of energy				
	Selective stabilization of microtubules - Capping proteins				
	Growth cannot be controlled (they as but can be directed	re randomly growing),			
What is the function of kinesin and dynain?	Motor proteins - Drive transport in a neuron	Potrogrado and			
KINESIII anu uynein:	anterograde transport				

What is the function of the light chain and the heavy chain in motor proteins?

If kinesin always goes to the plus end of the microtubule and dynein always goes to the minus end, how come the cell doesn't accumulate these proteins at each extremity?

2b. Action potential propagation

2c. Invertebrate model organisms

	Yeast model system
	Cell communication is the same as neurons
	Drosophila - Nervous system with enough complexity (e.g. it can fly)
	C. Elegans - Simply built nervous system
	There are many other animal models - Snails for synaptic plasticity, zebra fish for developmental neurobiology(transparent), finch for plasticity (learning new birdsongs), humans (non-invasive methods, tissue studies)
How many genes do C. elegans have? How does it compare to humans?	Homo sapiens - 3.2 Gb, estimated gene number of 27 thousand C. elegans - 100 Mb, 23 thousand genes
How many cells do C. elegans have? How many are nervous cells?	 C. elegans - Nematode worm 1.5 mm in length - Lives in the soil, feeds on bacteria, no economic importance 959 cells - One third of that are neurons (302) All individuals have the same number of cells
Why is C. elegans a model organism?	Why is C. elegans a model organism? Small, easy to maintain Short generation time(3-days) and self-fertilizing Cell lineage is constant and mapped Transparent body Sequenced genome - wormbase.org
What percentage of C. elegans is male? What is the role of males in the population?	They are hermaphrodites, but can also reproduce sexually (only 1% of offspring made by cross-fertilization) Male offspring is really rare - 5% Females can reproduce by themselves
	C elegans life cycle Has an embryonic development of 12 hours (fertilized egg to larvae) Complete life cycle in three days (from egg to adult)
	Dauer larva - 'Hibernation', occurs when organism does not find food or when the temperature is too cold (lives four months) It does not make sense to complete development when the environment is not favorable
How many chromosomes	Can be kept in a freezer in oil (avoid ice crystals) C. elegans genome
does C. elegans have?	6 chromosomes - 5 autosomes and 1 X chromosome

From Molecule to Mind Page 2

	Cell lineage (1090 cells) The nematode C. elegans (959 cells) Programmed cell death (131 cells) Ving cell dead cell
	 Simple nervous system (302 neurons) Similar neurotransmitter as humans (Acetylcholine, GABA, dopamine, serotonin) Sophisticated behaviour - Moving backwards and forwards, respond to odors, chemicals, temperature differences, associative
	learning and habituation
What are the techniques related to forward genetics?	 Genetic experiments Forward genetics - Mutations occur, breeding takes place, mutant offspring is isolated and the gene is mapped (observing phenotype first) 1) Random Mutagenesis - Generate small mutations (chemicals) 2) Transposons - DNA elements (Tc1) that jump around genome, may inactive a gene Induced mutation - Self-fertilization - full phenotype! (double mutation)

	RNAi can be feed to C. elegans in bacteria! Easier to do than inject RNA in the gonads of the animal Does not generate a full knockout, only a partial knockout This is advantage, because most full knockouts in C. elegans are lethal - Allows more interesting observations than 'This is an essential gene' RNAi has been done to knockdown all C. elegans genome 2) PCR identification of rearrangements
What are the two molecular functions that Antisense RNA has in a cell?	Antisense RNA - Complementary to the normal mRNA 5' AUG 3' PROTEIN MADE
	5' AUG 3' NO PROTEIN MADE 3' antisense RNA Physically blocks translation Induces RNA degradation - RISC complex - Breaks down double stranded RNA in organisms (innate protection against virus) Small RNA molecules (siRNAs) - Also is broken down by RISC complex
What are the three ways to get dsRNA into C. elegans?	3 ways to interfere using double stranded RNA Injection of dsRNA in gonads Soaking animals in dsRNA Feeding animals with bacteria producing dsRNA Produces a transient knockdown - Gives interesting phenotypes when the full KO is lethal
What are possible research purposes of injecting extrachromosomal DNA into C. elegans gonads?	 Getting DNA into c. Elegans DNA is injected into the cytoplasm of the gonads The DNA can pass through the germline in the form of extrachromosomal DNA Image: Strach of the gonad Image: Strach of the go

	induced gene in with interference
How can a fluorescent marker like GFP be inserted specifically into specific types of neurons, such as GABAergic neurons?	unc-25 syb-GFP UNC-25 is a GABA transmitter cell specific gene (glutamic acid decarboxylase) Syb= expressed in vesicle membrane Syb-GFP = fusion protein expressed in ves membrane
	inject into germline inject into germline gonad isolate transgenic worms
	Syb - Synaptobrevin Every vesicle becomes a green vesicle Unc-25 - GABA transmitter cell specific gene (glutamic acid decarboxylase)
	Mutant offspring will express GFP in all GABAergic neurons Image: Stress of the stress of t
How can C. elegans be useful in biomedical research for diseases such as Parkinson's or Alzheirmer's, if the nematodes do not have higher cognitive behaviour?	C. Elegans as a model in biomedical research CNS - Depression, psychosis, Parkinson's, Alzheimer's, pain Metabolic - Type II diabetes, obesity Other - Cardiovascular, oncology, muscle disease Many conserved molecular pathways Worms do not express the same higher cognitive behavior as humans - Research in this area is important for pharmacological/cell biology breakthroughs
How can human channels be used in C. elegans in a high- throughput essay?	Pharyngeal pumping depends on voltage-gated channels Express human ion channel after knocking down the endogenous channel present in the pharynx If human channels are able to replace them, the system would work again

2d. Function of neurons and synapses in the human brain

- Human connectome project (2009)

- EU human brain project (2013) - ICT based brain research; Mining data from Hospitals

Review: Neuron (2016 in November) - Global Neuroscience

Summary - Small differences in many neuronal properties may reflect the big differences observed between humans and other primates

3. Building the Basics - Protein structure and function (ECB 4)

Alpha helix with hydrophobic side chains - Where a protein sits in the cell membrane

Alpha helix with polar and non-polar side chains - Helices wrap around one another to minimize exposure to the aqueous environment (coiled coil)

3b. Model Organism in Neurogenomics: Yeast

Why is yeast used as a model in the context of	6000 genes - 25% essential, 75% non-essential				
Nouroscionco?	Fukarvotic call - Have organelles and vasiale secretion				
neuroscience:	Eukaryour cen - mave organenes and vesicle secretion				
	Genes are not a predictor of complexity: Nematodes have the same amount of genes as humans				
	Vaact has many similar proteins - Vasicle proteins				
	It is useful to attain proteins - vesice proteins				
	It is useful to study molecular processes				
	In Science, you should answer your questions with the simplest				
	organism possible				
Explain Randy	Randy Schekman - Won a Nobel Prize studying yeast (check online				
Schekman experiments	lectures https://wn.com/randy_schekman_univ_calif_berkelev_part_1				
with veast.	biochemical reconstitution of transport vesicle budding)				
<u>,</u>	Random mutagenis - Carcinogens inserted into veast				
	Mutations in proteins do not cause problems at 23 degrees but				
	cause problems at 38 degrees. Temperature sensitive mutation				
	cause problems at 50 degree - remperature sensitive indiation				
	23°C 38°C				
	- You can use these yeast in the lab at lower temperatures				
	- Sec-1 - Vacuoles filled with enzymes that are secreted in a				
	normal yeast cell				

	<image/> <image/> <text><text><text><text></text></text></text></text>
Why the collection of sec wasn't complete for a long time?	Collection of sec genes is not complete - For some genes, that are two proteins made by two different genes that make the same thing • Robustness - An organism tolerates mutations due to redundancy; this is present in complex organisms, since it prevents a single mutation to kill the organism

	 E.g. Sec4 overexpression rescues Sec1 mutant To determine two redundant genes, you need more advanced technology: Synthetic Lethality
	Synthetic Lethality
	The middle squares, in which the combination of two mutations causes the cell to die, probably represents two redundant genes for the same function
Why an overexpression of one gene may compensate for the absence of another gene?	Epistasis - The effect of one gene depends on one or more modifier genes All genes have a residual activity, even when they are not activated(stochastic nature)
	Gene A Gene B Gene C Biological Process If you overexpress gene B, even if it is gene A mutant, the process might still work
Where does the ratio 9:3:4 come from?	Onions - Red is dominant, white is recessive Epistasis - Ratio of 9:3:4 (C gene needs to produce something that the R gene can act upon)

4. Optogenetics

Describe which approaches have been used to try to assess	Traditional approaches to have a causal understanding of brain areas - Lesions - Mechanical and chemical o Irreversible				
causal relationships	\circ HM - Both hippocampi lesioned - Short-term memory loss				
between brain regions	 Phineas Gage - Prefrontal cortex lesion - Personality change/ impulsivity 				
and behaviour. What are	- Pharmacological - Receptor agonists and antagonists				
their main limitations?	○ Reversible				
	• Not very spatially precise - A drug acts on the entire brain at once; not				
	selective to cell types, many receptors are expressed in many brain cell				
	types				
	- Deep brain stimulation				
	 Fast - Electrical stimulation 				
	\circ Not very precise as well - Many neurons in the viscinity will be activated				
	along with the desired area				
	- Genetic intervention - Full/partial knock out of genes				
	 Bad temporal resolution - Takes a long time 				
	Electrical Physical Pharmacological Genetic Optogenetic				
What are the main	Optogenetics - Activation of cells using light				
advantages of optogenetics?	Gene sensitivity to light can be selectively expressed Very high temporal resolution - Use of light! Reversible - Light can be turned off Can induce any firing frequency , even silence neuronal activation Integration of genetics, neurophysiology, neuroanatomy and behaviour				
	Optogenetics tools Bacteria, fungi and animals express light-sensitive ion channels and pumps - E.g. Discovery and use of GFP (jellyfish)				
What are the two most common opsin genes used in optogenetics? What is their effect in the neuron?	Opsin genes Channelrhodopsin (ChR2) - Sensitive to blue light Potassium and sodium flows through - Cells will be depolarized Halorhodopsin (eNpHR3.0) - Sensitive to yellow light Chloride flows through - Hyperpolarizes the cell				

How can gene delivery be specific if virus infect cells indiscriminately?

5B. Models and methodologies - Mutant mice

How humans compare with other organisms in terms of gene-rich areas, mRNA splicing and repeated sequences?	 How humans compare with other organisms? Humans have seemingly random gene-rich areas, while the genome of other animals is more evenly distributed and predictable Humans have mRNA splicing occur more intensely than in other animals - multiple different proteins can be derived from the same gene Humans have most of the same protein families as in other model animals, but with a greater variety of family members Humans have more repeated sequences than other model animals 								
What does the forced swim test reveal about mice as model organisms?	Forced M A (u or	Forced swim test (with pigment so that the mouse cannot see the platform) Mice do not like to swim - Once they find the platform, they are happy After a few trials, mice learn where the platform is, it goes straight to it (uses cues in the environment to navigate - complex behaviour, simpler organisms cannot do this)							
Why are mice better than	Mice co	mpared to	other o	rganisms					
rats in terms of genetic			man	monkey	rat	mouse	fly	worm	yeast
manipulation:	В	ehaviour	√	√	√	√	√/x	√/x	x
	E pl	lectro- hysiology	Х	√	\checkmark	√	✓	\checkmark	Х
	N ai	euro- natomy	√	√	\checkmark	√	✓	\checkmark	Х
	N bi	euronal iochemistry	х	х	\checkmark	√	√/x	√/x	x
	N bi	euronal Cell iology	х	x	\checkmark	✓	✓	√	x
	G	enetic nanipulation	Х	x	√/x	√	✓	\checkmark	√
	M	len and chir	npanze	es - Probl	ematic for	r ethical re	easons		
What is syntheny?	Mice	.1 1							
What is the difference between construct validity and face validity?	Similar genes - Few exceptions of genes present in humans that are not present in mice Syntheny - Physical colocation of genetic loci between different species Color code - Same genes that mice have in common with humans								
	a)				b)				

From Molecule to Mind Page 1

	Weaks that we can have construct validity - Model human disease in mice Trissomy of the 21 chromosome - mice present the same symptoms Does not mean that it has face validity (you have not proved that there are no differences between mice and humans)
What is the process for transgenesis?	Principles for producing mutant mice Transgenesis (random insertion) Happens naturally all the time - Virus insert DNA - Occurs more frequently with open DNA (active being transcripted) - You take a gene with its promoter (maybe a reporter gene such as GFP or channelrhodopsin), insert it in a fertilized egg
	 Test of offspring - PCR/Western Blot Measure protein or RNA expression to be sure that the transgenesis was sucessful

From Molecule to Mind Page 3

How can you differentiate homologous recombination and random insertion in terms of neomycin expression?						
	Not transfected or not recombined	Targeted ES clones	Random integrations			
	† neomycin	10 PCR /	490 Southern			
	Cells without neomycin - Die					
	Random integrations (the knock of interest) - Express neomycin (out happens in the ge (do not die)	enome, but not in the locus			
	Homologous recombination - Ex Need PCR/Southern blot to	xpress neomycin (do 1 o differentiate	not die)			
Why can't you generate a double knockout mouse with homologous recombination?	Chimeric mice A lot of the fur derived fro occocococo Embryonic stem cells line E14.1 (129/OlaH	om aguti mice, some b Injection into sd)	lack fur			
	C57BL/6 129P2/Ola Chimera	Implantation	CONTRACTOR OF			
	Use the most chimeric mice to reproduce again The next generation, a complete mutant mice is available					
	Nicotinic acetylcholine receptor control attention B-gal - Acetylcholine recep DTA - Diphteria toxin-A (o Random insertions w Homologous recomb	B2 subunits in the me otor cells that express this rill die pination will live	edial prefrontal cortex will die)			
How can LoxP and Cre be useful to create	Conditional Knock-out using Cr Insertion of a LoxP site - Ir	e sert a specific mutatio	on			

mutant mice?

Control to the bacteriophages (virus) - Chops up its own genome to ampin

Guarantee that the knockout happened in only a specific cell type (that expressed LoxP) - in all other cells, gene expression remains normal

Promot

Flank gene + Neomycin - Homologous receombination replaces it Replaces entire gene by the same gene + neomycin

STAT3(P) - Activation of transcription factor

it

WT STAT(3) - Important in leptin signalling
Review Homologous recombination - Insertion of foreign DNA molecule into the
genome
The inserted DNA is double helix - Each recombines with their respective DNA sisters
Why is the gene reversed?
So that the gene of interest is not combined with introns of the opposite strand
Neomycin is an antibiotic - All cells die, except the ones that express the gene
It can also be inserted into a random part of the genome How to differentiate that? PCR that amplify a select segment of primer + gene of interest

6. Intracellular compartments and transport (chap 15)

From Molecule to Mind Page 4

Network structure on the outside - Comes from proteins that are

From Molecule to Mind Page 7

	Golgi apparatus Golgi secretory vesicle storing secretory
	CYTOSOL EXTRACELLULAR SPACE
	Protein - Regulated secretion (signaling required) Lipid - Constitutive secretion (no-signaling required)
	Protein sorting by the endosome Some protein enter the cell and need to go out - E.g. LDL (lipid) cannot be transported in the aqueous environment of the cytosol
Why doesn't the proteins in the lysozome destroy the cell?	Lysozomes serve degradation Creates building blocks for the cell - Nucleotides, amino acids Enzymes - Active in pH 5.0 (hydrogen pumps) Nuclease Protease Glycosidase Lipase Phosphatase Sulfatase Phospholipase These enzymes are <i>inactivated</i> in the cytosol - This is why the cell does not destroy itself from lysozome protein activity
Describe the difference between phagocytosis, endocytosis, pynocitosis and autophagy.	Different inputs PHAGOCYTOSIS PHAGOCYTOSIS phagosome hydrolytic enzymes hydrolytic enzymes hydrolytic enzymes ysosomes hydrolytic enzymes ysosomes hydrolytic enzymes hydrolytic enzymes hydrolyti
	Endocytosis - Elquid structures Endocytosis - Absorbtion of extracelullar material from the cell Autophagy - Breakdown of cells own organelles

6b. Cell communication (ECB chap 16 + Purves chap 7)

From Molecule to Mind Page 1

From Molecule to Mind Page 3

	(C) G-protein-coupled receptors	(D) Intracellular receptors
	Receptor Receptor G-protein	Signaling molecule
	Different drugs act on different modulation)	regions of receptors (allosteric
Describe the structure of a GPCR. Why is it a receptor, not a channel?	GPCR - Seven transmembranes Do not form a pore, but change bound G-protein binding site is revealed VI VI VI IIIIIV	ed
	signaling	n many points in the GPCK

	Recep	otor 🔿 G	G-proteins	Adeny cycla	^{lyl} >>	Cyclic AMP	> Prote kinas	ein ses	Phosphates transferred to target proteins
		Amplification	n ampli	Jo Fication A	amplificati	on ampli	No	Amplifica	tion
Which sense is involved	Tvpes of G	PCR							
in almost half of all	Receptor class	Glutamate	GABAB	Dopamine	NE, Epi	Histamine	Serotonin	Purines	Muscarinic
GPCR subtypes?	Receptor subtype	Class I	GABA _B R1	D1 _A	α1	HI	5-HT 1	A type	M1
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5	GABA _B R1 GABA _B R2	D1 _A D1 _B D2	α1 α2 β1	H1 H2 H3	5-HT 1 5-HT 2 5-HT 3	A type A1 A2a	M1 M2 M3
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II	GABA _B R1 GABA _B R2	D1 _A D1 _B D2 D3 D4	α1 α2 β1 β2 β3	H1 H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5	A type A1 A2a A2b A3	M1 M2 M3 M4 M5
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3	GABA _B R1 GABA _B R2	D1 _A D1 _B D2 D3 D4	α1 α2 β1 β2 β3	HI H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6	A type A1 A2a A2b A3 P type	M1 M2 M3 M4 M5
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II mGlu R2 Class III mGlu R4	GABA _B R1 GABA _B R2	D1 _A D1 _B D2 D3 D4	α1 α2 β1 β2 β3	H1 H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y	M1 M2 M3 M4 M5
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R6	GABA _B R1 GABA _B R2	D1 _A D1 _B D2 D3 D4	α1 α2 β1 β2 β3	H1 H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t	M1 M2 M3 M4 M5
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R6 mGlu R7 mGlu R8	GABA _B R1 GABA _B R2	D1 _A D1 _B D2 D3 D4	α1 α2 β1 β2 β3	H1 H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u	M1 M2 M3 M4 M5
GPCR subtypes?	Receptor subtype	Class I mGlu R1 mGlu R5 Class II mGlu R3 Class III mGlu R3 Class III mGlu R4 mGlu R7 mGlu R7 mGlu R8	GABA _B R1 GABA _B R2 (150 ou	Dl _A Dl _B D2 D3 D4	α1 α2 β1 β2 β3	HI H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u	M1 M2 M3 M4 M5
GPCR subtypes? Describe the full cycle of	Receptor subtype Half o Steps in G	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R4 mGlu R4 mGlu R7 mGlu R8 of GPCR	(150 ou naling	DI _A DI _B D2 D3 D4	α1 α2 β1 β2 β3	HI H2 H3	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u	M1 M2 M3 M4 M5
GPCR subtypes? Describe the full cycle of GPCR signaling.	Half of Steps in G Signa	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R4 mGlu R4 mGlu R7 mGlu R8 of GPCR PCR sign ling mole	(150 ou naling ecule -	Dl _A Dl _B D2 D3 D4	α1 α2 β1 β2 β3) - Olfa	ctory	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2x P2y P2z P2t P2u	M1 M2 M3 M4 M5
GPCR subtypes? Describe the full cycle of GPCR signaling.	Half of Steps in G Signa	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R6 mGlu R7 mGlu R8 of GPCR PCR sign ling mole G-protein	(150 ou naling n intera	DI _A DI _B D2 D3 D4	α1 α2 β1 β2 β3) - Olfa protein the me	ctory conform	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u P2u	M1 M2 M3 M4 M5
GPCR subtypes? Describe the full cycle of GPCR signaling.	Half of Steps in Global Signa	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class III mGlu R4 mGlu R4 mGlu R7 mGlu R8 of GPCR PCR sign ling mole G-protein likelihoo	(150 ou naling ecule - n intera	Dl _A Dl _B D2 D3 D4	α1 α2 β1 β2 β3) - Olfa protein the me ith the	ctory conform mbrane recepto	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 7 5-HT 7	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u P2u	M1 M2 M3 M4 M5
GPCR subtypes? Describe the full cycle of GPCR signaling.	Half of Steps in G Signa	Class I mGlu R1 mGlu R5 Class II mGlu R2 mGlu R3 Class II mGlu R6 mGlu R6 mGlu R7 mGlu R8 of GPCR PCR sign ling mole G-protein likelihoo a subunit	(150 ou naling ecule - n intera od of bin t of G-r	DI _A DI _B D2 D3 D4 t of 300 change act with nding w	α1 α2 β1 β2 β3 protein the me ith the inds to	ctory conform mbrane recepto	5-HT 1 5-HT 2 5-HT 3 5-HT 4 5-HT 5 5-HT 6 5-HT 7 7 7 - Increa r - Releas	A type A1 A2a A2b A3 P type P2x P2y P2z P2t P2u P2u asses	M1 M2 M3 M4 M5

Activated beta-gamma activates another channel Activated GTP-alpha subunit is autophosphorylated after some time - GTP becomes GDP and unbinds from alpha subunit Alpha subunit binds again to beta-gamma subunit

membrane channels and

conformation)

7. Proteomics - Methods to identify proteins and to understand their function

What is a proteome?	 What is a proteome? Catalog of all proteins expressed throughout life and under all conditions Sub-proteomes - Of cells or organelles - Expressed at a given time and under specific conditions
What are the aims of proteomics and their practical applications?	 Aims of proteomics Provide a catalog of all proteins present Quantitative data - How much protein is expressed To understand protein functions How proteins interact and what they interact with (interactome) Practical applications Variance in protein expression between healthy and disease cells Likely to reveal new drug targets - Clinical trials become more efficient
What is the main reason that proteomics is more difficult to study than transcriptomics?	Transcriptomics vs Proteomics Proteomics require 1000 - 3000 cells, transcriptomics require 1 cell Transcriptomics has amplification steps - PCR!
What are the challenges of proteomics?	 Challenges of proteomics Transcript splice variants create many different proteins - 25000 genes create 200.000 proteins Protein expression varies with age, health, tissue and stimuli from the environment Proteomics requires a broader range of technologies than transcriptomics
Why is the proteome complex?	Complexity of proteome - Splicing, post-translational modifications, phosphorylation changes protein function

	Transcription
	Alternative splicing
	exon1 exon2 exon3 exon1 exon2 exon4 mRNAs
	Translation
	(Posttranslational modification not shown)
	Sugar Lipid Cleavage Glycosylation P-Getter Posttranslational Many more Phosphorylation Phosphorylation Phosphorylation Phosphorylation Phosphorylation Phosphorylation
	E.g. Calcitonin gene produces two different proteins through splicing; Insulin cleavage
What are the three most	Types of chemical modifications
important types of	Phosphorylation - Activation
protein chemical modifications?	Glycosylation - Cell-cell recognition, signaling Ubiquitination - Destruction signal
How can proteins be	Separation of proteins
separated from one another?	Proteins have different physical properties - Size, charge (average of basic and acidic amino acids) and hydrophobicity
Describe how a one-	Polyacrylamide Gel Electrophoresis (PAGE)
dimensional SDS-PAGE	Electrode - Proteins travel to the plus end (anode) of the
WOIKS.	Porous gel - Small proteins travel faster than larger proteins
	Gravity plays almost no role - Proteins move according to thermodynamic forces
	Process:
	- Denaturation - Unfolding is necessary because some proteins are more folded than others
	 Sodium Dodecyl Sulfate (SDS) - Soap, binds and confers negative charge to proteins (charge becomes proportional to mass) You always run the gel with a known reference

		tank buffer
	● power supply (+)	cathode stacking gel separating gel anode
	Stainir	ng is proportional to the amount of protein quantity
What is the difference	Protein elec	ctrophoresis (non-denaturing conditions)
protein electrophoresis?	Proteir	erreatment of proteins before electrophoresis ns retain their shape and charge - Separation is dependent
protein creedopnoresist	on cha	arge, size and shape of natural proteins
Describe how a two	Two-dimen	isional PAGE
dimensional SDS-PAGE works.	Separa accord	ates proteins from charge (number of protons changes ling to pH) and mass
	Proces	SS:
	- Separa	ate in first dimension by charge (pH difference)
	- Apply	r first gel on top of second (soaked in SDS)
	- Separa	ate in second dimension by size (normal SDS
	electro	opnoresis)

	Protein mixture Separate in first dimension by charge PH 4.0 Isoelectric focusing (IEF) pH 10.0
	Apply first gel to top of second
	pH 4.0 pH 10.0 Separate in second dimension B by size pH 4.0 Separate in second dimension B by size pH 10.0 SDS electrophoresis
	Isoeletric focusing (IEF) - Proteins sit at the point of the gel in which the sum of its charge is zero The more positive amino acids, the more negative in the gel it will go
	Phosphorylation state - Proteins of same size but different charges (more phosphorylation, more to the right) Left - Acidic Right - Basic
	Quantification by densitometry - Spot intensity (measured by pixel intensity) Most proteins do not change expression - House keeping gene
	Problems with 2D gels - Poor performance to large proteins, very small proteins, less abundant proteins, membrane-bound proteins (stay at a lipid environment - they bind with each other in an aqueous environment)
Describe how 2D liquid chromatography works.	2D Liquid Chromotography First phase - Charge Second phase - Hydrophobicity

	A O O O O O O O O O O O O O O O O O O O
	Matrix material in column - Proteins stick to the column at different rates, fluid change the environment Fraction numbers - Different tubes that collect different peaks Each tube is then separated by hydrophobicity
Describe how a mass spectrometer works.	Detection and Identification of Proteins Mass spectrometry - Nobel Prize in Chemistry in 2002 - Measures mass-to-charge ration Components - Ion source, mass analyser, ion detector Time of flight (TOF) Time of Flight
	Pulsed laser Detector Image: plate TOF Sample plate Reflector Time for accelerated ion to reach detector indicates mass-to-charge ratio (the larger the protein, the longer it takes to reach the detector) Proteins are ionized - They only get one electron (native protein charges does not matter in vacuum) Vacuum - Prevents colisions of proteins with air molecules At a second step - A little nitrogen can be inserted into the tube of the mass spectrometer, so that the protein is broken into its peptides Peaks of different intensities

	The peptides are not charged in the same way Mass spectrometer is not useful for quantification				
How can you identify a	How to identify proteins from their mass?				
protein if you know its mass?	Protein size is proportional to their amino acid sequence				
	COMPUTER SEARCH				
	DNA Protein Sequence sequence database database peptides protection of the sequence sequence database sequence database sequence database sequence				
	tteteateaaagaaateaaagggaage ttattacegggtgggagteaaggttt caaaaggattggagtecattgt caaaaggattggadtecattftettetaag aaacaattegaggatettgctggatea				
	You can predict the amino acid sequence from the DNA				
	sequence - Theoretical proteolytic peptides K or R - Cleavage of tripsin				
Describe how stable isotope protein labeling works. What is its main shortcoming?	How to solve the problem of quantification? Labeling methods - Enzymatic, metabolic, via chemical reaction Detect the relative abundance of labeled and non-labeled proteins measures in mass spectrum				
	Mass spectrometer does not detect light, only mass! Create a system with small variation in mass				
	Stable isotope protein labeling E.g. Carbon 12, 14 - Creates a double peak in the reading				

	☐ light isotope ■ heavy isotope
	Digest
	Mass spectrometry
	The peptide is identical, the only change is the weight of carbon -> The ionization will be the same -> Allows the quantification of the signal of the same peptide
	This experiment is problematic because you need to feed cells/animals C14 for a long time
Describe how isotope coded affinity tag works.	Isotope Coded Affinity Tag (ICAT) Label cysteine residues with light/heavy ICAT
	ICAT Reagents Heavy reagent: d8-ICAT ($X =$ deuterium) Light reagent: d0-ICAT ($X =$ hydrogen) HN H X X X H Thiol-specific Biotin Linker (heavy or light) Thiol-specific reactive group
	Biotin - Binds to avidin protein (used to separate which proteins have the ICAT construct) Thiol-specific reactive group - Binds to cystein Linking chain - Can be light or heavy

8. Synapses (chap 5 Purves)

	- Underlying memory strengthening (?)
	Behaviour is overcoming inhibition
Describe the ten steps of how chemical synapses work.	How do chemical synapses work? Neurotransmiter release Receptor binding Ion channels open or close Conductance change causes current flow (inhibition or excitation) Postsynaptic potential changes Postsynaptic cells excited or inhibitedd Action potential occurs or not
	Memorize steps 1-10 for exam 4. Calcium is a universal signal for vesicle binding (influx of calcium occurs before cell depolarization)
	10. Clathrin coats

What is the difference (A) (C) between small chemical transmitter and peptide Synthesis of Synthesis transmitters in the neurotransmitter precursors and of enzymes in cell body process of transport? . enzymes Golgi' apparatus Transport of enzymes and peptide precursors down microtubule tracks ilow axonal transport of enzymes 5 Transport of precursors into terminal 3 Synthesis and packaging of neurotransmitter 3 1 Neurotransmitter œ Enzymes modify diffuses away and is degraded by proteolytic enzyme E precursors to produce peptide neurotransmitter Release and diffusion of neurotransmitter Diffusio degradation Small molecule transmitter - The axon is really far away from the soma; there is a local cycle of chemicals Peptide transmitter - Does not have a local cycle, it is produced in the soma and transported to the axons Dense core vesicles

What is the difference between small chemical transmitter and peptide transmitters in terms of calcium activation?	Small-molecule neurotransmitter in small clear- core vesicles Localized increase in Ca ²⁺ concentration Low-frequency stimulation Nore diffuse increase in Ca ²⁻ OCOCOCO Stimulation Nore diffuse increase in Ca ²⁻ concentration OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
	High-frequency stimulationRelease of both types of transmitterLow frequency stimulation -> Small molecule neurotransmitter release Increase in calcium remains localizedHigh frequency stimulation -> Small molecule and peptide neurotransmitter release The entire terminal fills with calcium This is the basis for LTP and LTD - The more often used, the more calcium a synapse will have
How was a vesicle transmition hypothesized even before the invention of microscopy?	Electrode at a receiving cell (muscle fiber) There are sub-threshold events - Suggested quantal neurotransmission, even before people saw a vesicle

release of chemical signals

How can there be a 0.6 signal? Mix of different vesicle

3. Calcium binds to synaptotagmin, which buries itself in the membrane (higher affinity for lipids -> hydrophobic amino acids are revelead)

	(3) Entering Ca ²⁺ binds to synaptotagmin
	Ca ²⁺
	 (4) Ca²⁺-bound synaptotagmin catalyzes membrane fusion
What is an autaptic	Main models to study secretion
neuron?	Cultured neurons (mouse or humans) - Only dissection materials from a surgery can be used for culture
	Autaptic neurons - Single neuron grown with glial cells, and that synapse with itself

How does an FM dye work?	FM dies - Lipophilic molecules that become red when they are in lipids Staining of outer leaflet of membrane with dye Stimulation and exocytosis of vesicles Stimulation and exocytosis of vesicles Endocytosis of vesicles and trap of dye in vesicles Wash of dye from medium and plasma membrane Ooooooo Subsequent exocytosis results in loss of dye from terminal
How does calcium caging	Calix of Held - Presynaptic neuron encapsulates the post synaptic
work?	Allow many release sites to be made
	Calcium is bound to cage - Inactive
	binding

8b. SynBio2: Chemical synapses

	CV: Coated vesicle: PSD: postsynaptic density: Mito: mitochondrion; DCV: dense core vesicle: SPM: synaptic plasma membrane Mito DCV SPM PSD SPM PSD SPM PSD SPM PSD OCV
Why is a neuromuscular	Neuromuscular junction - Organization is more complex than a
junction more reliable	normal synapse
CNS? Why is that important?	
	sv sv pro pro
	Multiple release sites - Often more than 20
	the muscle is still able to contract
	This occurs because signals for muscle contraction need to
	be reliable 100% of the time - for the animal's survival!
	There are six clathrin molecules per vesicle
Describe four different types of neurons and define how much they	Differences in release probability of different synapses play an important role of the brain's ability to process information and retrieve it

are reliable?	A B B C A A A A A A A A A A A A A A A A
Which type of synapse	Certain connections are inherited -> Encoded by DNA
would a genetically	A dog will salivate from the smell of food - Synapses are reliable
encoded signal have?	ones (calix of Held and neuromuscular junctions)

b) Augmentation c) Post-titanic potentiation d) Depression					
	(c) Types of plasticity				
	PPF				
	Augm.				
	979				
	Depr.				
	Gument Opinion in Neurobiology				
	Paired pulse facilitation - Two concurrent stimuli cause a higher				
	release probability				
	Augmentation - Shorter lasting than PTP, the release probability				
	PTP - Post-titanic potentation - After intense activation - a long				
	change in release probability happens				
	Depression - Due to thelack of vesicle release				
What is the molecular	Paired pulse facilitation				
process that underlies	Vesicle with calcium ions are close to the membrane				
paired pulse facilitation?	Calcium channels are not randomly distributed - they are				
	localized in the presynaptic membrane				
	The calcium is diffused in the synapse when it is not activated When two pulses occurs at the same time - The local calcium concentration is higher for a longer period of time - increased				

9b. Models and Methodologies - Drosophila

	Flybase: Genome of Drosophila is fully mapped and available online							
	Two Nobel prizes: Principles of translocation (1925)							
	- Certain traits are more likely to occur together (unit: morgan)							
What are transposons?	Transposons as a tool							
How can transposons be used as a genetic tool?	Transposon: 123456789-transposase gene-987654321 123456789-transposase gene-987654321							
	ACGATCACGATATATTTCAGATCATATGCAAATCGAGTACATATCATTTTCGCATA							
	TGCTAGTGCTATATAAAGTCTAGTATACGTTAGCTCATGTATAGTAAAAGCGTAT							
	Target site HOST DNA							
	ATCATATGCA 123456789-transposase gene-987654321 ATGCAATCGA TACTATACGT 123456789-transposase gene-987654321 TACGTTACCT							
	TargetInvertedInvertedTargetrepeatrepeatrepeatrepeat							
	Small piece of DNA that codes a single gene							
	Can insert itself into host DNA							
	Less commonly sucessful in eukaryotes - DNA is not acessible (histones)							
	Transpassa protain							
	I ransposase protein:							
	Excises transposon from host genome (precise/imprecise)							
	Can cause problems if it loses 1 or 2 nucleotides							
	(changes reading frame)							
	Induces integration into novel site							
What is the important of transposons in	Transposons cause greater variability in the genetic material Explains the immense variability and our fast evolution (random							
evolution?	mutations are too slow to explain it)							
	A lot of our own genome can be recognized as transposons							
How can transposon be	Transposons as tools - Insert transposons into Drosophila genome							
usea in genetic	Transposons as a tool							
sereening.								

used in genetic screening?	<section-header><section-header></section-header></section-header>
	Amp resistance geneOrigin of replicationBehavioural screens - See which genes are important for
	particular behaviour A transposon will land itself in important genome regions - disrupting their functions
	Transposase gene can be inactived Origin of replication - Bacterial replication that express a specific part of fly genome Today it is cheaper to map the entire genome of the fly instead of using bacteria to produce enough DNA Ampiciline - Resistance marker
What are hox genes?	Hox-cluster - Division of head, thorax and abdomen
	The Hox-clusters (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c
Give three examples of traits discovered in Forward behavioural screenings in fruitflies.	Forward behavioural screens Period - Loss of sense of time The gene encodes a transcription factor that periodically transcribes other genes Fruitless - Loss of copulation impetus Gene only expressed in males and involved in sexual
	differentiation Dunce - Loss of odor discrimination General enzyme present in every cell of the body

10. Neurotransmitters and their receptors (Chapter 6 Purves)

From Molecule to Mind Page 1

	The simpler the organism, the more peptide neurotransmitters they have!				
Which molecule is used	Acethylcholine metabolism in cholinergic nerve terminals				
to produce acetylcholine? Which organelle does it come from?	Glucose				
Which enzyme breaks) Pyruvate				
synaptic terminal?	Presynaptic + /Na ⁺ /choline terminal / /Na ⁺ /choline				
down Ach in the synaptic terminal?	Acetyl CoA Choline Acetyl CoA Choline Choline Choline Choline Choline Acetyl Choline Choline Choline Choline <t< th=""></t<>				
	Acethylcholine -> Acetate + choline in the synapse (breakdown is very fast, since you need to contract and relax your muscles very				
	fast) Acethylcholine is inactive but choline can act upon certain types of Ach receptors Reuptake on choline by Na/choline transporter				
	Organic phosphates - Block acethylcholinesterase -> muscle cells cannot relax Thousands of people die of organic phosphate poisoning				
	Small chemical transmitter are always produced locally				
How many subunits	Structure of Ach receptor				
have?	molecules need to bind to alpha subunits) -> allows passive				
	diffusion of ions when it is active				

			y y J J m	a 						
What is the	Gene	ral arch	itecture	of ligan	d-gated	recepto	ors			
physiological advantages of having		Differe	nt comb differen	ination (of subui	nits hav	e differe	ent kine	tics and	can
many different types of		Differe	nt cell ty	pes exp	ress diff	ferent re	eceptor	types		
subunits for channels?		Receptor	AMPA	NMDA	Kainate	GABA	Glycine	nACh	Serotonin	Purines
		Subunits	Glu R1	NR1	Glu R5	α ₁₋₇	α1	α ₂₋₉	5-HT ₃	P _{2X1}
		nation of 4 or 5	Glu R2	NR2A	Glu R6	β ₁₋₄	α2	β ₁₋₄		P _{2X2}
		required for each	Glu R3 Glu R4	NR2B	Glu R7 KA1	γ ₁₋₄ δ	α3 α4	γ		P _{2X3} P _{2X4}
		receptor type)	Chu Hu	NR2D	KA2	3	β	· ·		P _{2X5}
						ρ_{1-3}				P _{2X6}
				77	4 1	•,				P _{2X7}
		AMPA, GABA,	glycine,	, Kainate acethylch	e - 4 subi 10line, se	units erotonin	- 5 subu	nits		
How many subunits does a metabotropic	Meta	Aetabotropic receptors - 7 transmembrane subunits Great variety also - 5-HT 3 is a mistake in Purves Receptor Glutamate GABAB Dopamine NE, Epi Histamine Serotonin Purines Muscarinic								
receptor nave?		class' Receptor	Class I	GABA _B R1	D1 _A	α1	H1	5-HT 1	A type	M1
		out type	mGlu R1 mGlu R5	GABA _B R2	D1 _B D2	α2 β1	H2 H3	5-HT 2 5-HT 3	A1 A2a	M2 M3
			Class II mGlu R2		D3 D4	β3		5-HT 4 5-HT 5 5-HT 6	A20 A3 P type	M4 M5
			mGlu R3 Class III					5-HT 7	P2x P2y	
			mGlu R4 mGlu R6 mGlu R7						P2z P2t	
		Danauri	mGlu R8	a lia au d	a stadios		la in the		P2u	·
Which molecule is	Cluta	Dopumi moto or	me nus no	and ave	ling hot	a chunne		mummu		n
converted into	Giuta	Glutar	ine -> G	lutamat	e via gli	utamina	ase			
glutamate? Which			T		1			G	lial cell	
enzyme does that				1/1/1	$\langle \rangle$					
	Presynaptic terminal Glutamine H ₃ N-CH-CH ₂ -CC-NH ₂ Glutaminase Glutaminase Glutaminase Glutaminase									
						ine ise				

From Molecule to Mind Page 7

From Molecule to Mind Page 8

catecholamine neurotransmitters	Tyrosine COO ⁻ CH ₂ -CH- ⁺ NH ₃
produced?	HO ² Tyrosine hydroxylase
	Dihydroxyphenylalanine (DOPA) HO HO
	DOPA decarboxylase Dopamine
	Depamine-J hydroxylase Norepinephrine OH
	HO CH-CH-NH ₃
	OH RCH3 Phenylethanol- amine N-methyl- transferase
	Epinephrine HO CH-CH-NH ₂ HO CH ₃
	Tyrosine (normal amino acid)
	DOPA
	Dopamine
	Norepinephrine
	Epinephrine
	Depending on the enzyme expression in this pathway, the neuron
	will produce different transmitters
	These are produced in basal brain areas - Indicates an old evolutionary history
Which brain regions produce dopamine?	Dopamine is produced by very localized neurons Substantia nigra Vental tegmental area

10b. Synaptic Plasticity (Chapter 8 Purves)

From Molecule to Mind Page 2

From Molecule to Mind Page 5

	 Phosphorylation-> Protein kinase A -> Activates CREB and other transcription factors -> Active genes in the nucleus -> More AMPA/NMDA receptors -> Bigger synapses This takes a lot of time -> Memories become stronger (days/months) If you block gene expression hours after an event -> The memory is 				
	not stored				
What is the difference between LTD and LTP?	Long term depression (LTD) - Happens due to low frequency stimulation (low glutamate concentration)				
How does calmodulin	CaMKII activation by calmodulin				
and calcium mediate the kinetics of CaMKII?	(calmodulin-inaccessible) (calmodulin-accessible) (calmodulin-accessible)				
	Kinase domain is inacessible in a state You need enough calcium to maintain the open the structure of CaMKII				

11. Synbio8: Short term plasticity

	needed to maintain the potential of the cell					
Why is the affinity of synaptotagmin sensor not very high?	Synaptotagmin knockout Synchronous fusion is lost Asynchronous fusion increases					
	Affinity of synaptotagmin sensor is not very high -> Otherwise, the offrate is very low, creates an irreversible system; The binding only happens when there is a lot of calcium -> synaptic transmission is really brief					
	SV membrane b $\frac{23}{9}$ 23					
Where is the calyx of Held present in the nervous system?	Calyx of Held - Thin layer of presynaptic structure, many release sites Unusual structure (incredibly reliable, but high energy cost) - Present in very localized and important systems. e.g. Auditory response (fight or flight)					
	(a) Proc Proc 40 mV 2 rA 1 ms					
	Current clamp - Fixed current, measure voltage Voltage is proportional to the number of vesicles B - Voltage is reduced because there are not enough vesicles					
Describe the advantage of using calcium gating.	Ca-DMN - Photoproducts + calcium - Reliable measure of calcium release throughout the entire cell - you can very the wavelength of light or the time of pulses Normally, increase in calcium is very localized					

c) Desensitization	A Facilitation 1^{**} pulse Residual Ca 2^{ne} pulse 0.2 nA $0 0 0$ $0 0 0$ $0 0 0B Depression1^{**} pulse Residual Ca 2^{ne} pulse 0 0 0B Depression1^{**} pulse Residual Ca 2^{ne} pulse 0 0 0B Depression1^{**} pulse Residual Ca 2^{ne} pulse 0 0 00 0 01^{**} 0 0 01^{**} 0 0 01^{**} 1^{**}$
	C Desensitization Control C Desensitization C Desensitization C Desensitization C Desensitization C Desensitization C Desensitization C Desensitization C Desensitization C Desensitization D Depression due to diminished response of receptors (not the vesicles!)
What does A2/A1 graph measure?	Short-term, use-dependent plasticity on two timescales A2/A1 - Second pulse divide over first pulse A Short-lived depression B Long-lived depression A^{A_1} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_2} A^{A_1}
In eletronic circuits,	Electronic circuits have similar behaviors

12. Dissecting protein interactions

How much information increases from the human genome all the way to protein interactions?	Dimensions of information complexity Genome: 25,000 genes Transcriptome: 100,000 mRNAs Proteome: 400,000 proteins -> millions of interactions
	<complex-block></complex-block>
Describe this figure.	Interactions in the yeast proteome

If you would like to investigate protein expression using immunodetection in three different organelles on the same	Example: Detection of 3 cytoskeletal proteins (requires 3 primary antibodies and 3 different secondary antibodies Colocalization of proteins to understanding their role in the certable conditional proteins specific to the organelle A Example: Detection of interest (labeled in green) EEA1/GM130/SgII - Proteins specific to the organelle	different) ell
cell, how many different primary antibodies and secondary antibodies would you need?	B EGFP-Rab26WT GM130 Merge	Rab26
	Zoom in at ER	
	C EGFP-Rab26WT Sgll Merege	Rab26 Sgll
	Y-axis - Intensity of fluorescence X-axis - Distance (white line in the image)	
Describe how immunobloting works.	Immunoblotting (Western Blot) - Immunodetect specific prote separated by size via SDS-PAGE)	ins (e.g.
What difference you would expect if you	Protein that reacts with antibody protein that reacts with antibody spe	rotein band letected by cific antibody

used polyclonal or monoclonal antibodies for a Western Blot?	SDS- polyacrylamide Polymer sheet Polymer sheet being exposed to antibody Fluorescent detection Polymer sheet exposed to antibody Fluorescent detection Polymer sheet into antibody Polymer sheet exposed to antibody Fluorescent detection Polymer sheet exposed to antibody Fluorescent detection Polymer sheet exposed to antibody Fluorescent detection Polyclonal antibodies -> often show multiple bands Monoclonal antibodies -> often show only one band
Describe how immunoprecipitation works.	Immunoprecipitation - Affinity purification based on complexes of proteins A + proteins B
What is the difference in using polyclonal or monoclonal antibodies in an immunoprecipitation essay?	A - Polyclonal antibodies (separation by centrifuging) B - Monoclonal antibodies (binds to a bead via the heavy chain -> separation by centrifuging)
Describe a typical immunoprecipitation essay.	 Typical immunoprecipitation protocol 1. Solubilize protein - Non-denaturing 2. Mix extract and antibody 3. Add bead-Ab 4. Wash 5. Elute with sample buffer (detergent) 6. SDS-PAGE 7. Detection - Protein staining (e.g. Comassi blue) or immuno-detection

From Molecule to Mind Page 7

	Protein of interest binds to endogenous partner Pull down in a column - Only proteins with GST will bind Glutathione affinity resin GST-tag Bait protein Bait protein	
	G\$T-tag fused bait protein immobilized to glutathione affinity resinAfter Cell lysate addition, the interacting proteins will be boundedUnbounded proteins are eluted, and the interacting proteins are "pulled down"Then separate - pH or enzymatic reaction BlueNative-PAGEBlueNative-PAGEDisplay	
	Can be used to identify protein interactions in vivo - Allows identification of individual interactions	
What are the advantages and disadvantages of immunoprecipitation and pulldown?	IP and pulldown - Identify protein complexes Disadvantage - Low-affinity interactions cannot be identified -> alternative is yeast two-hibrid	
How the yeast two hybrid method takes advantage of the ways genes are expressed in	Yeast two hibrid - Can identify one-to-one interactions, including low affinity How gene expression works in yeast - Transcription factor has an activation binding domain + DNA binding domain	

Describe how the yeast two hybrid method works?

Separate DNA binding and transcription factor domains -> You can then add proteins of interest

Formation of a hybrid protein complex that can activate the gene

Fuse protein X to DNA binding domain in a plasmid -> Perform transfection

Unknown protein fused to activation domain -> Transfection in other yeast cell group

Mate two yeast cells -> Retransformed yeast

If reporter gene is active, then X and Y are present and are binding -> Yeast are able to grow

Isolate plasmid from colonies and sequence it

X-Y binding can be quantified by the rate of growth in the yeast colony - The lesser the affinity, the longer they take to grow

What is the main disadvantge of the yeast two hybrid method?

Yeast two hybrid need validation - May provide false data (proteins that never interact in the endogenous cell environment)

E.g. IP, immunocytochemistry -> X and Y should always be together! If they are separated, the result is a false positive