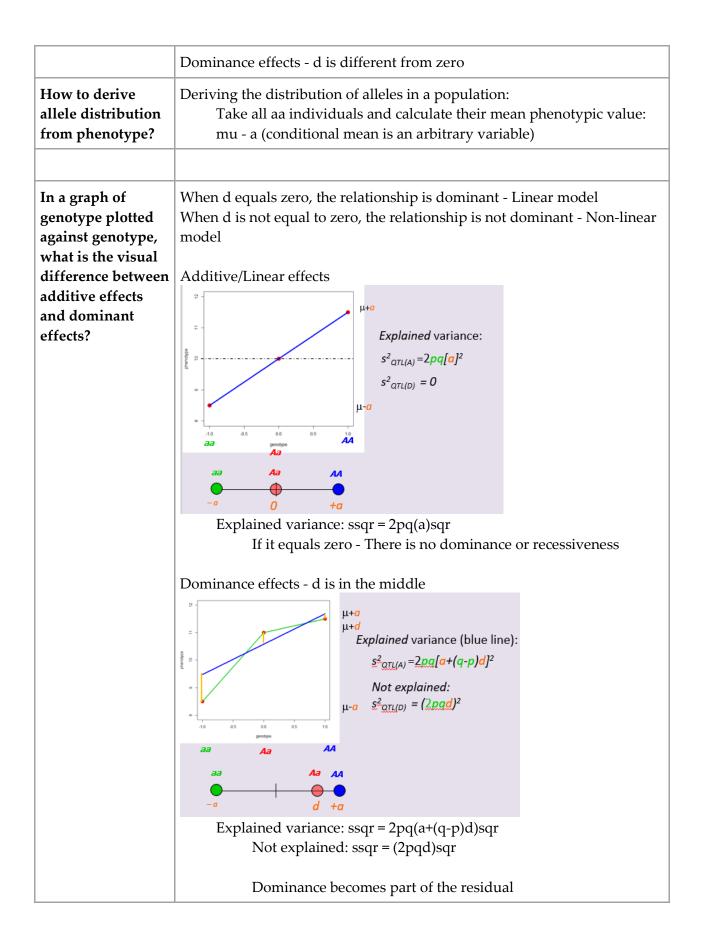
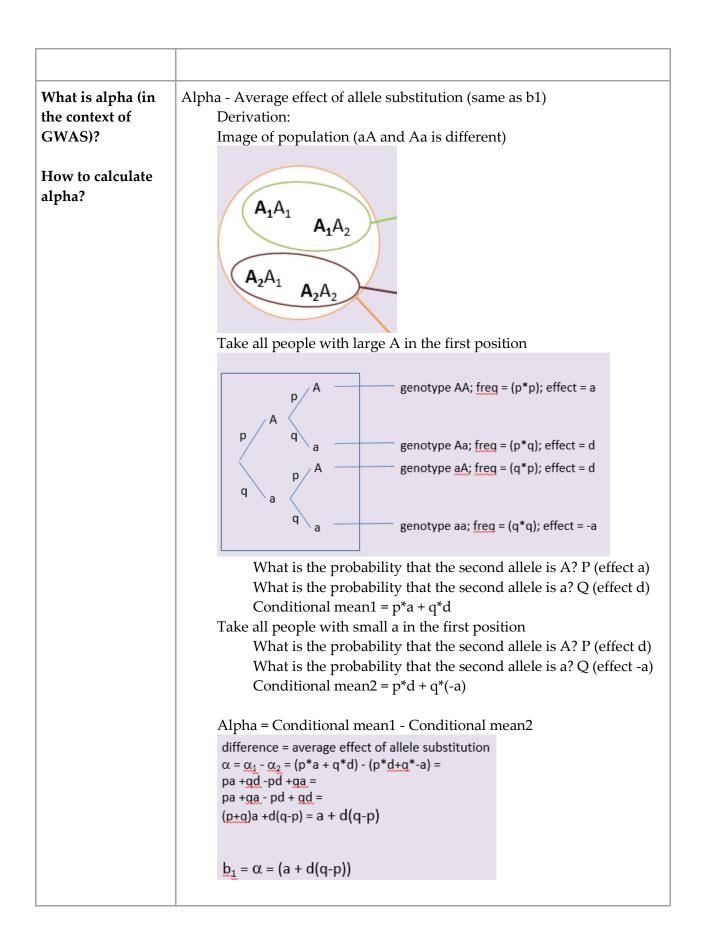
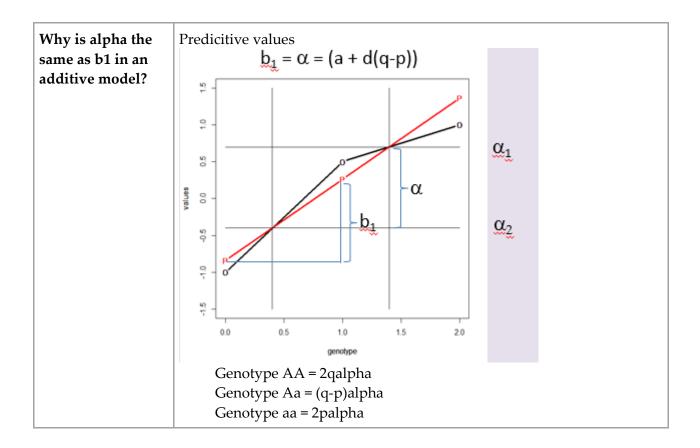

1a. From GWAS to the twin model via biometrical genetics (c.v.dolan@vu.nl)

What is the commonality between GWAS studies and twin studies?	Genome wide association studies (GWAS) The regression of a phenotype on measured variants Twin study Infering genetic effects from the phenotypic resemblance among twins Common biometrical underpinning - Relating genetic differences to phenotypic differences
Why is that 'having five fingers' is not in our genes?	GWAS is about the analysis of differences IQ genes - Genes that predicted differences in IQ Having five fingers is not in our genes - We can compare difference between people with five finger and people with more or less fingers
What is the science of biometrical genetics?	Biometrical genetics The science concerned with <i>inheritance of quantitative traits</i> Uses statistical analysis of the inheritance of difference phenotypes as related to plant or animal breeding
Can a continous phenotype (like depression) be discrete?	 Statistics refresher Linear model - Random variables and parameters Y = b0 + b1*x + e Error is not observed - we do not know what the true values of b0 and b1 are Distribution of random variables - Expressed in a histogram RV are discrete or continuous Discrete - Dice rolls, number of fingers Continuous - Height (can be measured with infinitive precision) This varies according to your proposition - Depression could be discrete (you are or you are not) or continuous (there are hundreds of genes related to depression)

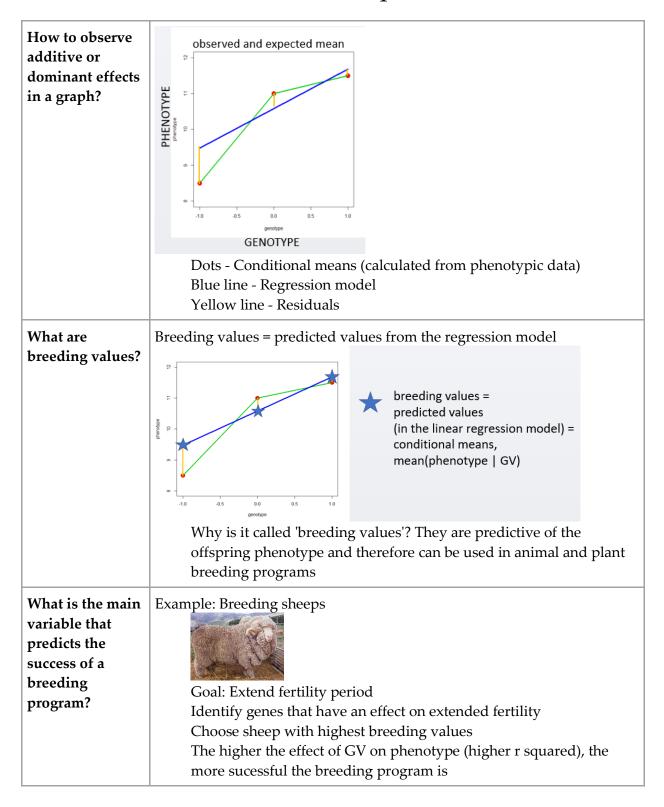
		X	Y
	Х	1	.350
	Y	.350	1
	Z-score - Linear a	ssociation between	X and Y in stand
What is the difference between regression and correlation?	Are the individua differences of X? R2 - Amount of v		factors - b1sq*va elated to the indi rom one variable
What does it mean to say that a variable is normally distributed given another variable?	Distributional assumpt Y I X - Normal (b)	0 + b1*x, stdev e	ed - In each grou
What statistical method should we used for	A binary dependent va regression must be use		for linear regress

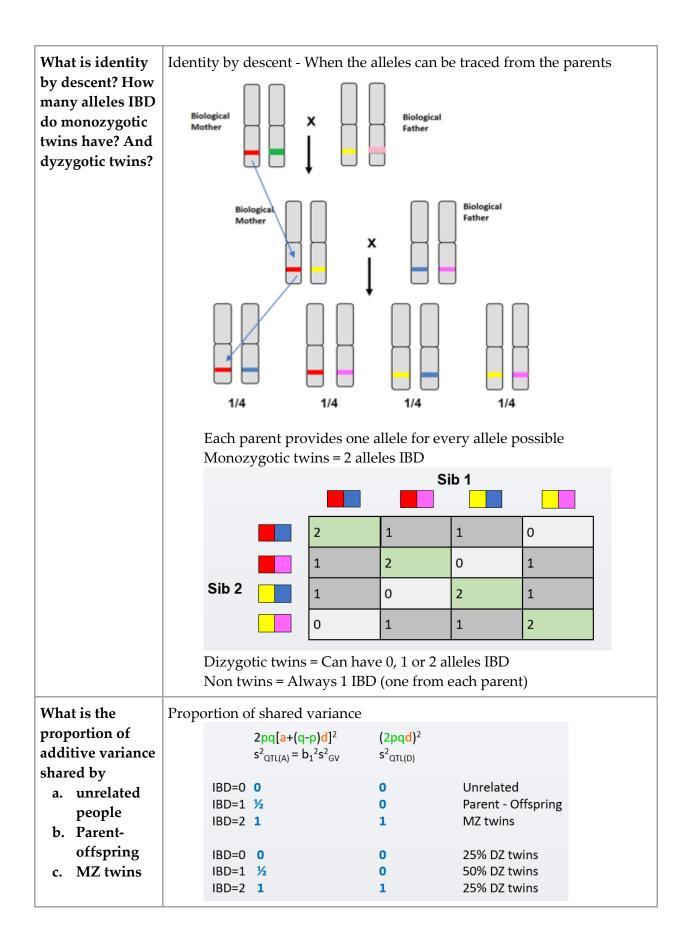

1b. How do people differ genetically?

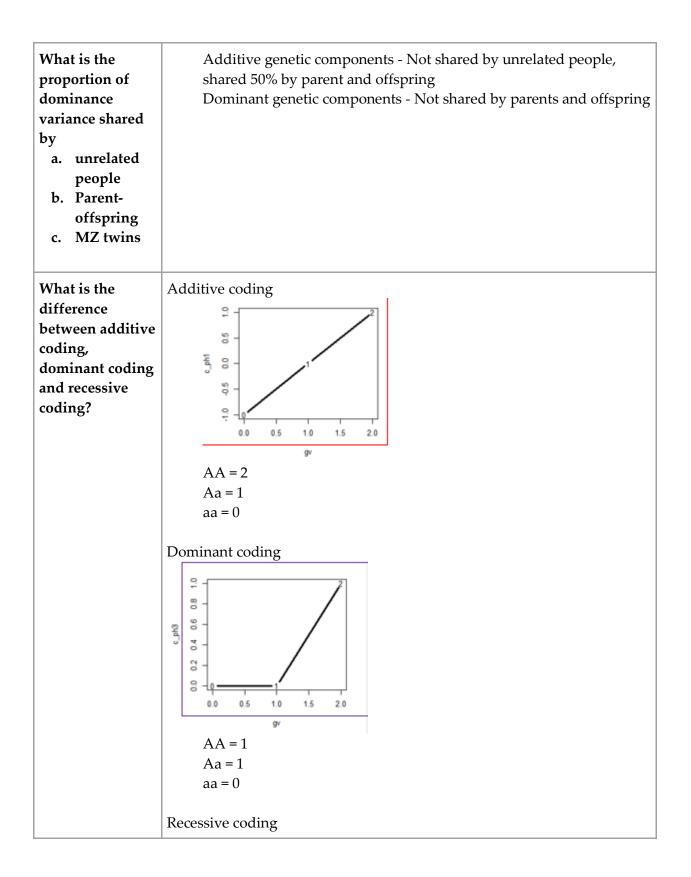

Define: a. Gene b. Locus c. Allele	Terminology Gene - Sequence of DNA that code for a particular product Locus - Site of a specific gene on a chromosome Allele - Alternative form of a gene at a locus Genotype - The combination of alleles at a particular locus Phenotype - Observed characteristic, trait
Where would a locus be if it was named "9q34.2"	Chromosome strucutre telomere 3 alleles A-B-O Each locus has 2 alleles - One paternal and one maternal Mendel's first law
What is a SNP	SNP (single nucleotide polymorphism) - Variant at a level of a single base pair
What are Mendelian traits?	Mendelian traits - 1 to 1 phenotype-genotype relationship Variations in 1 gene causes variations in the trait

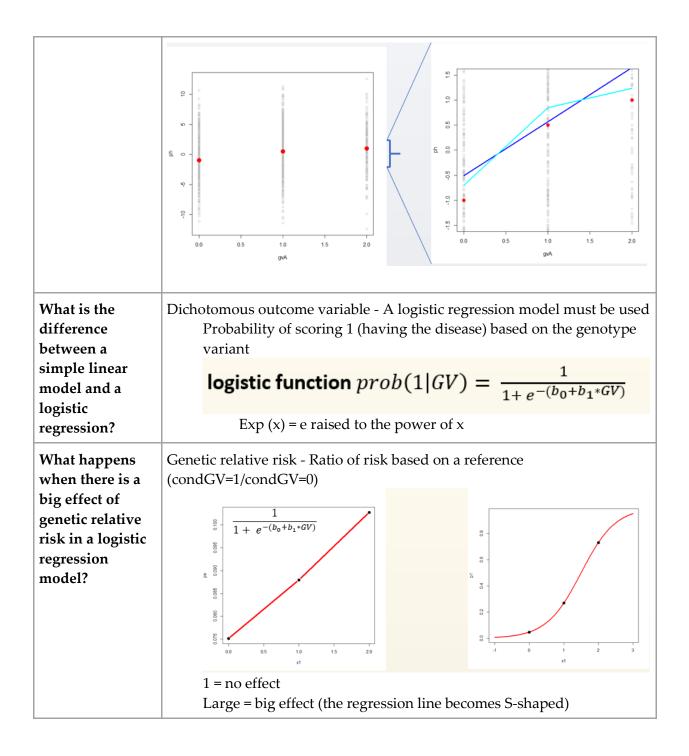

	 Examples Sickle cell anemia Cystic fibrosis Xeroderma pigmentosum PKU of fenylketonurie polydactyly 				
	Sickle cell anemia Cystic fibrosis Xeroderma pigmentosum Fenylketonurie Polydactylyl				
What are polygenic traits?	Polygenic traits - Quantitative/complex Accumulation of many single genes - Quantitative trait loci (QTL) The accumulation of many different gene give rise to a normal distribution				
	2 gys 20 gys $\frac{2}{9} \text{ gys}$ $\frac{9}{9} \text{ gys}$ 9				
Why is it difficult to have significant results in GWAS?	GWAS cohort study Y = b0 + b1*GV + e Var(y) = B1sqr * var(GV) + var e Predictive part depends on B1, the Genetic variance and the error				

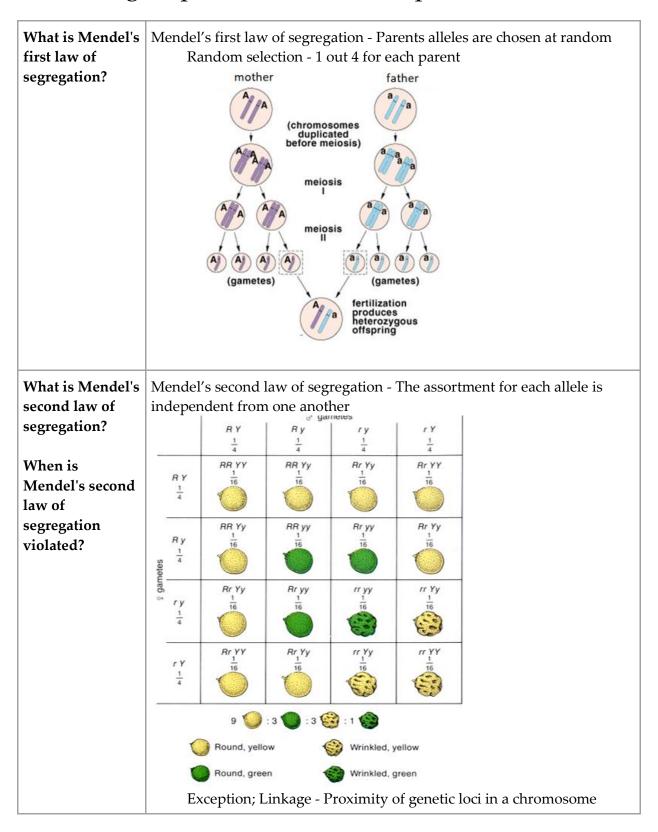
	H-null: b1 = 0 Bonferroni correction - With a million tests you are bound to find many false positives					
What is Hardy Weinberg equilibrium?	Define what is the distribution of alleles in the population Biallelic: A and a In GWAS: SNPs Frequency of A is p Frequency of a is q					
	What are the genotype frequencies (predicted from the the allele frequency)? Genotype frequencies (Random mating) Wother's gametes (egg) A(p) a(q) A(p) a(q) $A(p) AA(p^2) Aa(pq)$ $a(q^2)$					
	(Random mating) $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\end{array}) \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\end{array}) \end{array} \left(\end{array}) \left(\\) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R)					
	$P(\underline{Aa}) = 2pq \qquad p^2 + 2pq + q^2 = 1$ $P(\underline{aa}) = q^2$ Hardy Weinberg equilibrium					
Why is HW useful for GWAS?	Observed genotype frequencies - Observed empirically P(AA) = N(AA) / Ntotal P(Aa) = N(Aa) / Ntotal P(aa) = N(aa) / Ntotal Estimates allele frequency: P = p(AA) + 1/2 * p(Aa) P = p(aa) + 1/2*p(Aa)					
	GWAS studies - Need to establish that what they observe is close to Hardy Weinberg equilibrium This is important because it the genotype testing is not 100% reliable - Some loci are easy to genotype, others are difficult HW assumes that all genotypes have the same fit/ability to reproduce T(1) - Chi-square with one degree of freedom distribution (p = 3.84 is					

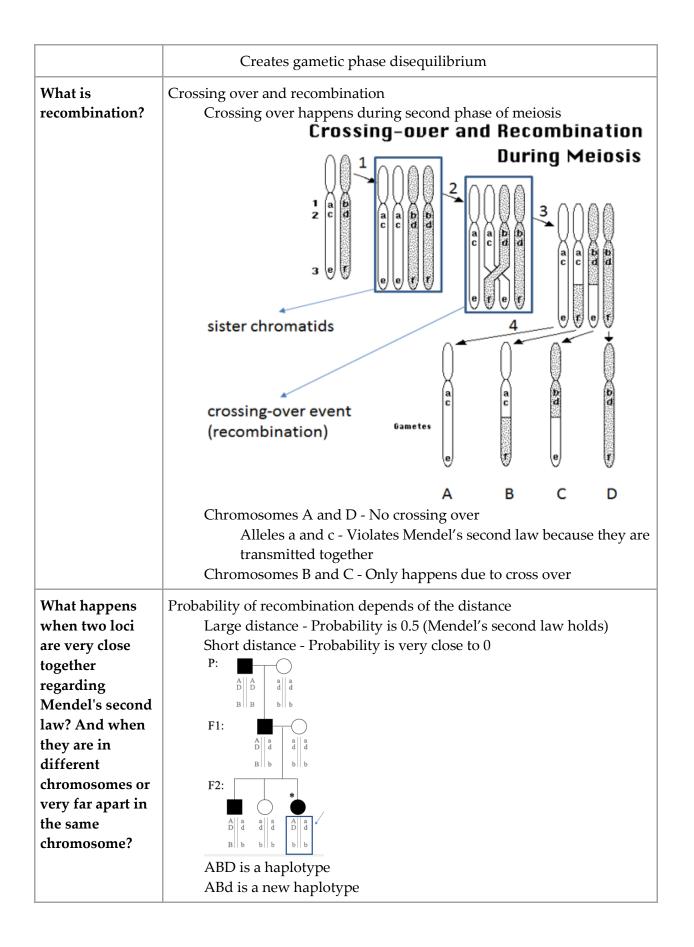

	associated with alpha < 0.05)						
	$T = \frac{(N_{O}(AA) - N_{E}(AA))^{2}}{N_{E}(AA)} + \frac{(N_{O}(Aa) - N_{E}(Aa))^{2}}{N_{E}(Aa)} + \frac{(N_{O}(aa) - N_{E}(aa))^{2}}{N_{E}(aa)}$						
	Degrees of freedom - 2x2 pq table; once you know p, you know q						
TT • (1 !!							
How is the "mean phenotype"	We know frequencies, we now assign effects to the genotypes M - a - Effect of genotype aa						
measured in a	M + d - Effect of genotype Aa						
population?	M + a - Effect of genotype AA						
	aa Aa AA - Genotype (q², 2pq, p²)						
	<i>−a d +a</i> ← Genotypic effect						
	$\mu - a$ $\mu + d$ $\mu + a$ \leftarrow means within each genotype (aa, Aa, AA) conditional on genotype						
	Take all individuals with a genotype and calculate their mean phenotypes						
Describe the	Contribution of the QTL to the phenotype mean						
formula for the contribution of	m= a(p-q) + 2pqd to the population phenotypic mean μ + m						
QTL to the phenotype mean?	M = a(p-q) + 2pqd						
	A = Homozygous effect						
	D = Heterozygous effect						
	If a and d equal 0 - There is no effect of the genetic variant on the phenotype						
What is the	Additive or linear effects give rise to variance component						
difference between	$\frac{Additive of inteal effects}{s^2_{QTL(A)}} = 2*pq[a+(q-p)d]^2$						
additive and dominant effects?							
	Dominance or within local allelic interaction effects						
	give rise to variance component						
	$s^2_{QTL(D)} = (2pqd)^2$						
	Additive effects - d equals 0						

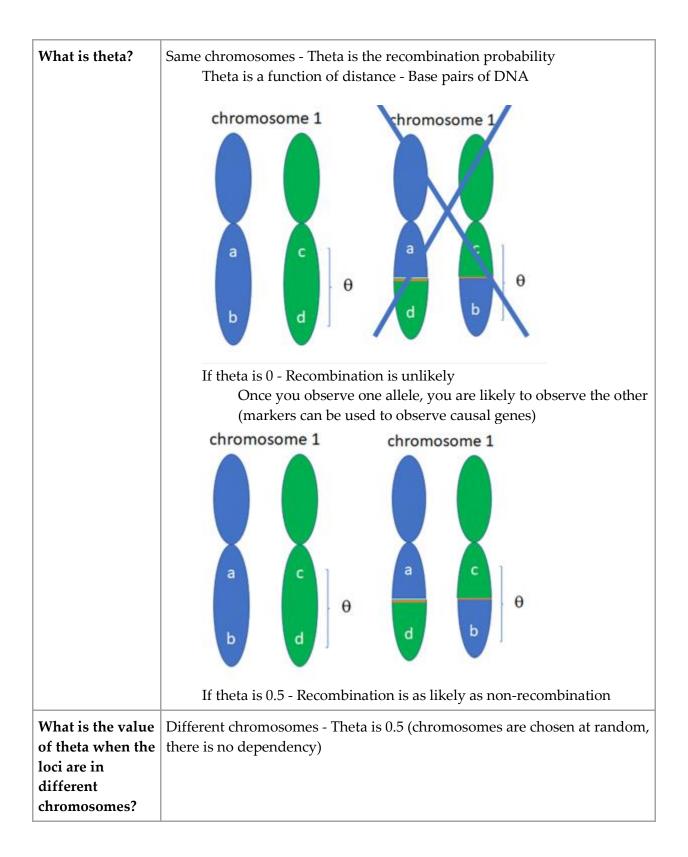


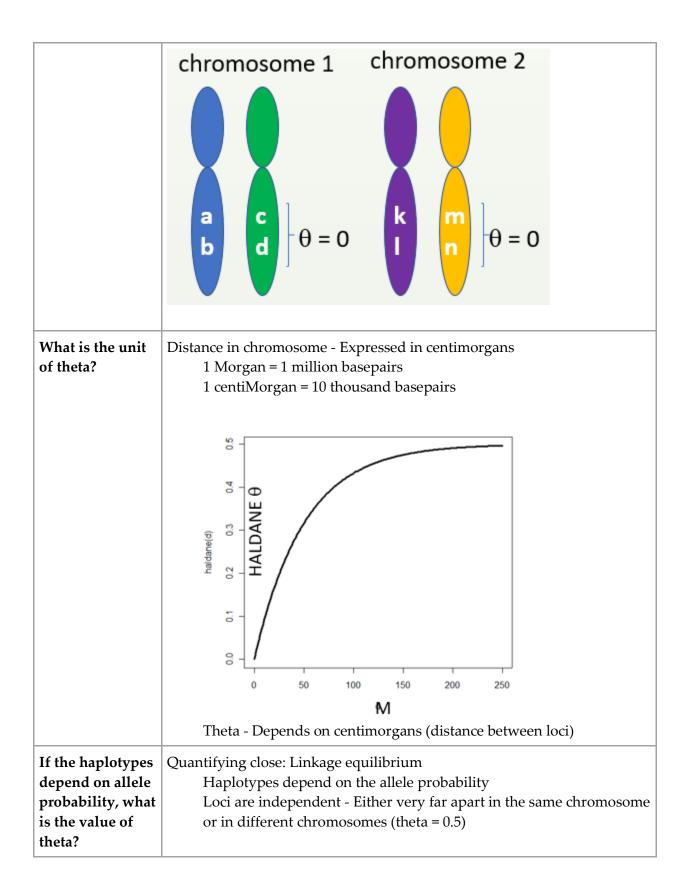



2. Additive + Dominance Component

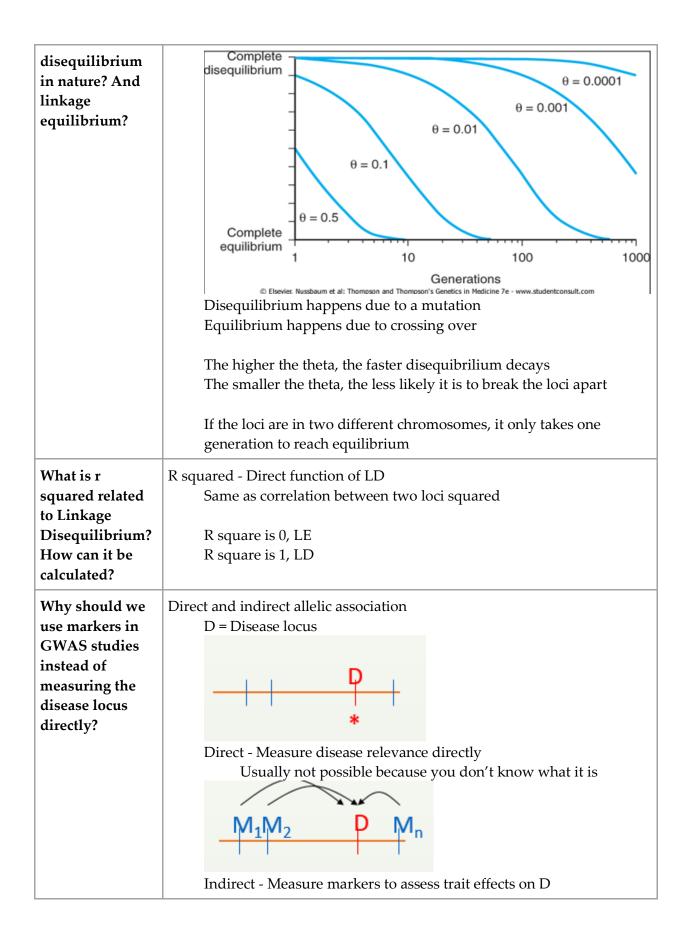


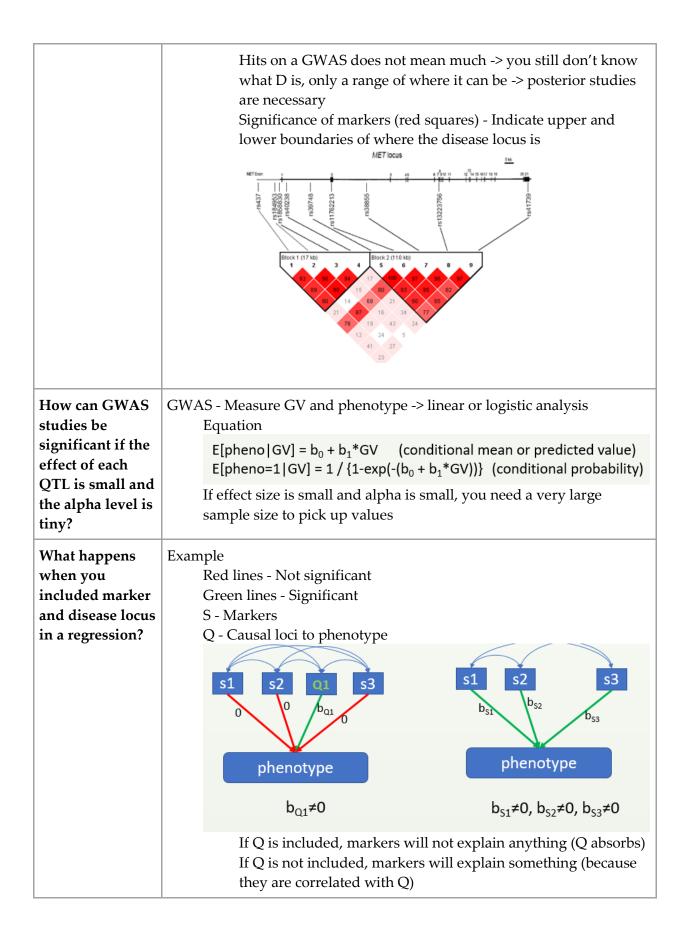



	AA = 1 $Aa = 0$ $aa = 0$ Figure - Domin	2 1.5 2.0	d recessive coc	ling		
How to represent	What about non-line	ear relationshij	ps?			
non-linear	co-0	dominant coo	ling			
relationships in a regression	genotype	allele1	$allele_2$			
model?	(A ₁ A ₁)	1	0			
	$A_2A_{1\&}A_1A_2$	0	1			
	A_2A_2	0	0			
	Dummy codin	g - Allelic asso	ociation test			
How is the	Explore genotype-pl		ionship			
additive and dominant effects		Polynomial additive	dominance			
of genotype	genotype	GV _A	GV _D			
described in	A ₁ A ₁	2	4p-2			
model to explain	$A_1A_2 A_2A_1$	1	2p			
variance of phenotype?	A_2A_2	0	0			
pricticity per	var(pheno) =	for studying g b _{1A} 2*var(GV _A) 2 <mark>pq[a+(q-p)d]</mark> 2	+ b _{1D} ^{2*} var(GV	′ _D) + var(residual) + var(residual)		
	Reject null hypothesis - Dominance is present Coding guarantees that the correlation between Gva and Gvd is ze (avoid multicollinearity in the model)					
How can dominance be visually identified from a graph?	Graph - a big differe	ence between t	he lines indicat	es dominance		

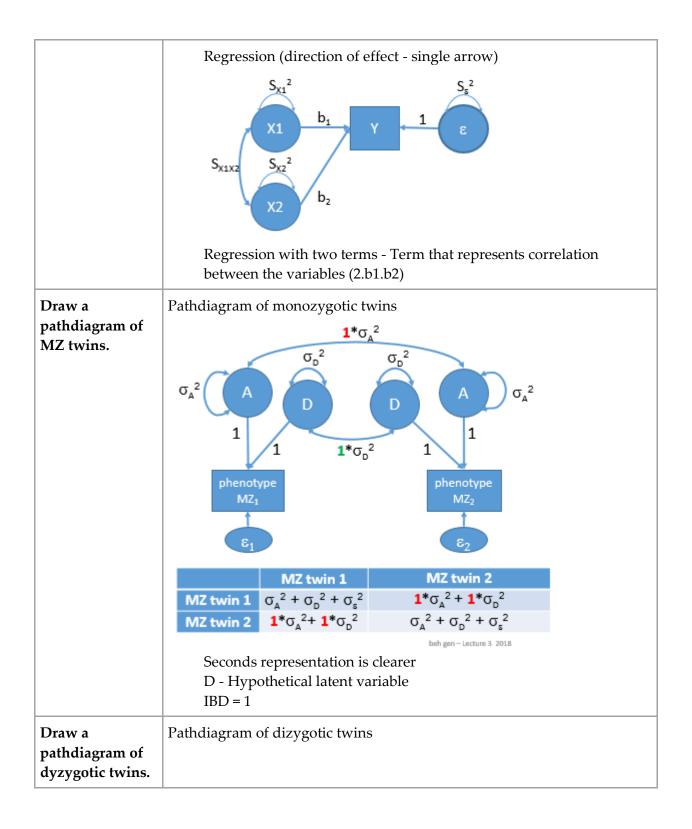


3a. Linkage equilibrium and disequilibrium





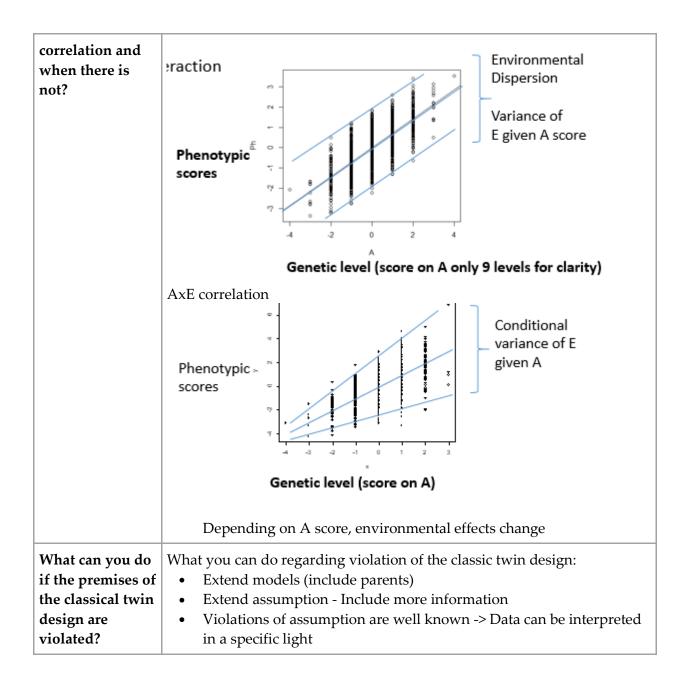
			Allel	es of m	arke	r 2 (p _B is fre	eq.)	
		~		B (p)	_B)	$b\left(p_{b}\right)$		
		ker 1 (freq.	ker 1 (freq. $A\left(p_{A} ight)$	AB (p _A p	_B)	Ab (p _A p _b)		
		Alleles of marker 1 (freq.	$a\left(p_{a} ight)$	aB (p _a p	_в)	ab (p _a p _b)		
What is the	Linka		Juilibrium	ı between	two r	narkers		
influence of linkage disequilibrium and HW disequilibrium?						erg equilibrium nly selected)	ı (geno	types at each
What is D'? What happens when D'		ure of Ll uibriliur	•	ndardizati	on va	lue that indicat	tes link	age
equals 0?	uiseq	AB	11)		A	b		
		P _{AB} =	=(p _A p _l	_∋ +D)		$_{Ab}$ =($p_A p_b$ -	D)	
		аB			а	b		
		P_{aB}	=(p _a p	_B -D)	P	$a_{b}=(p_{a}p_{b}+$	D)	
			lifferent f			ed (Linkage eq not perfectly co		
		A value	of D' on i	its own is i	not ve	ery informative		
What is the cause of linkage	Linka	nge disec	luilibrium	n decays or	ver ge	enerations as a	functio	n of theta



What are the three common forms of association in GWAS?	Association in GWAS: 3 common forms Direct association - Measure of SNP of interest that is causing the disease Indirect association - Markers Spurious association - You reject the null hypothesis, but the SNP is not related at all
What is a probable cause of spurious associations in GWAS?	Cause of spurious associations: Population stratification If you put two different populations together, you may get significant results

3b. Classical twin design

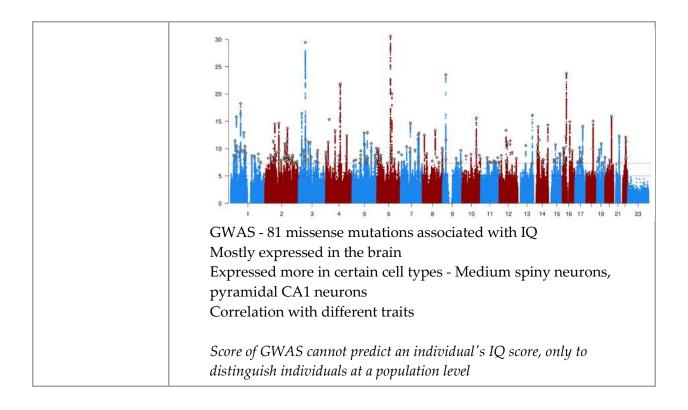
Why are twin studies used to study genetic effects?	Example: CHRM2 gene - Feedback and regulation of Ach release, related with higher cognitive processing Find a candidate gene first Posterior study confirmed the results					
Why are GWAS meta-analyses becoming more and more common?	GWAS meta-analysis Compendium of dozens of studies - Increase sample size GWAS opens the black box - One SNP at a time There are too many QTLs for complex traits like IQ Variance of IQ = additive effects + dominant effects + error (environmental effects)					
What is shared variance?	Shared variance - If two variables are subject to the same influence, they share variance attributable to that influence $ \begin{array}{c} & & \\ & &$					
Why are dyzygotic twins share 25% of their genetic variance IDB?	Genetic resemblance - Not affected MZ twins are genetic identica DZ twins - IBD 0, 1 or 2 -> av Half siblings 2pq[a+(q-p)d] ² s ² _{QTL(A)} = b ₁ ² s ² _{GV} proportion alleles IBD (2xcoefficient of kinship) IBD=0 0 IBD=1 ½ IBD=2 1 IBD=2 1 ½	al - IBD 2 erage of 1/4 (2pq s ² qru prob	ecombination/crossing over 3D 2 e of 1/4 (2pqd) ² s ² _{QTL(D)} prob(IBD=2) (coefficient of fraternity) 0 Unrelated (IBD 0) 0 Parent – Offspring (IBD=1) 1 MZ twins (IBD=2) 0 25% DZ twins (IBD=1) 1 25% DZ twins (IBD=2)			


	Table 2.18. (1.24): shared genetic variance						
	Relationship	Genetic varian					
		s _A ²	s _D ²				
	DZ twins, full sibs*	1/2	1/4				
	MZ twins	1	1				
	Half-siblings*	1⁄4	0				
	Parent-Offspring	1/2	0				
	Unrelateds	0	0				
	informative w.r.t.	proportion of	probability of				
	variance sharing	alleles shared IBD	IBD=2 sharing				
		s _A ² sharing	s _D ² sharing				
Which answer does the classical twin design try to answer?	Classical twin design How many variance of additive and genetic relatedness Explained variance of the genetic va phenotype = coefficient component	ariant with relation + variance of the g	n to the				
Why is pathdiagram notation useful?	Pathdiagram notation - Regression model Square - Observed variable Circle - Non-observable variable Double headed arrow - Variance of X						
	Y latent variable Y (not observed) Sy ² X latent variable X (not observed) Variance of the served						
	Y observed variable Y	x S _x ² variance					
	X latent variable X)						
	Images Covariance						
	$x \xrightarrow{b_1} y \xrightarrow{f_1} x$	2					

	<mark>½</mark> *σ _A ²						
	σ _A ²		σ _p ² D %*σ _p ²	σ _p ² D	A 1 phenotyp DZ ₂ E ₂	ο _A ²	oba
	DZ twin DZ twin	1 σ _A ²	$\frac{2 \operatorname{twin} 1}{\sigma_{D}^{2} + \sigma_{s}^{2}}$		$\frac{DZ \text{ tw}}{\sqrt[3]{2}*\sigma_{A}^{2}+}$ $\sigma_{A}^{2}+\sigma_{D}^{2}$	<mark>%</mark> *σ _p ²	
	IBD = 1	/2					
How can you	Covariance 1	matrix of twi	ns				
calculate the covariance		MZ twin 1 MZ twin 2			observed		
matrix of twins?		$\sigma_A^2 + \sigma_D^2 + \sigma_s^2$				117.10	
	MZ twin 2	$\sigma_A^2 + \sigma_D^2$	$\sigma_{A}^{2} + \sigma_{D}^{2} + \sigma_{D}$	5_{s}^{2} 11	17.10	144.12	
		DZ twin 1	DZ tw	in 2	ob	served	
		$\sigma_A^2 + \sigma_D^2 + \sigma_D$				52.79	
	DZ twin 2	½*σ ₄ ²+ ¼*σ _ε	$\sigma_{A}^{2} \sigma_{A}^{2} + \sigma_{D}^{2}$	² + σ _s ²	52.79	133.37	
	σ_{A}^{2}	σ_{D}^{2}	σ_s^2	σ _{ph} ²			
	93.766	22.814	22.753	139.3	33		
	expecte		expect				
	139.333	116.580	139.333	52.5			
	116.580	139.333	52.587	139.3	33		
	Monozygotic Covariance =		Ld	- *			
	Dizygotic tw Covariance =		1/4QTLd				
	Expected mo	odel should r	esemble the	observ	ed effects		

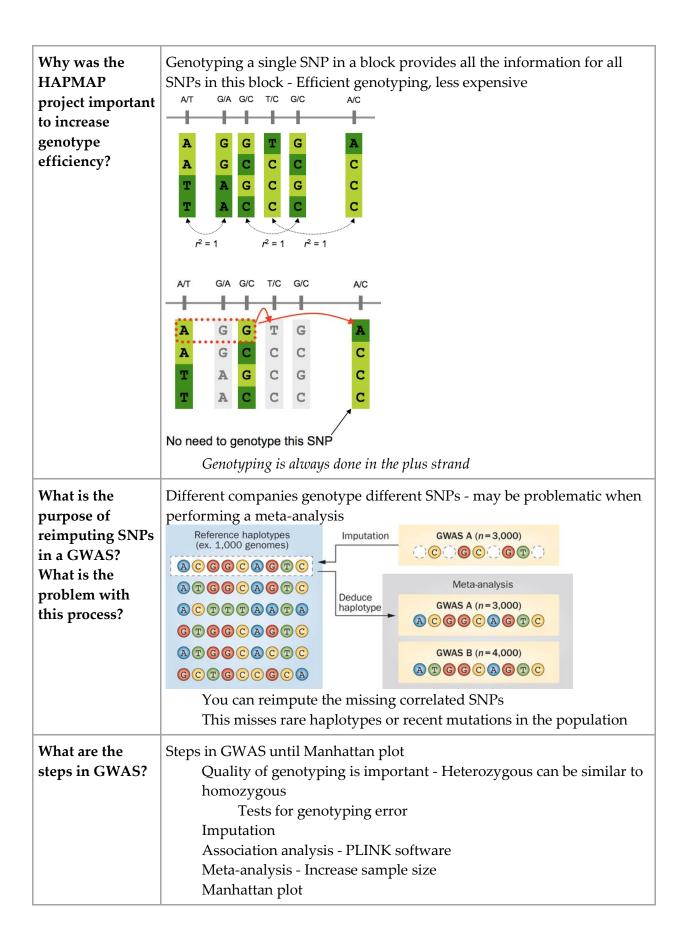
What does A, D, C and E stand for in a twin study model?	A and D are random variables $\sigma_{A}^{2} \qquad A \qquad \sigma_{D}^{2}$ $\sigma_{A}^{2} \qquad \sigma_{D}^{2}$ $\sigma_{A}^{2} \qquad \sigma_{D}^{2}$ $\sigma_{B}^{2} = \sigma_{A}^{2} + \sigma_{D}^{2} + \sigma_{S}^{2}$ $\sigma_{B}^{2} = \sigma_{A}^{2} + \sigma_{D}^{2} + \sigma_{C}^{2} + \sigma_{E}^{2}$ $A - Additive effects$ $D - Dominance effects$ $E - Environmental variation$ $C - Shared environmental variants$ $E - Non-shared environmental variants$ $Error is not included in the model$	
How are addivite, dominant and environmental	Additive + Dominant = Genetic component (broad sense heritability) Overall effect Additive only - Narrow sense heritability	
effects calculated in a twin study?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
What is the main problem with the classical twin design?	Twin design issue Distiction between genetic and environmental effect - You cannot fit a model with additive, dominant, shared environmental effects and unshared environmental effects ACDE model is not possible	

	ACE mo ADE mo			
		= twins are not o el = monozygotio	correlated c and dyzygotic twins a	re the same
What are the four types of models possible in a twin study?	calculation ACE model – calculation If rMZ > 2*rD2 If rMZ < 2*rD2 If rMZ = 2*rD2 If rMZ = rD2 =	σ_{A}^{2} $4*r_{DZ}-r_{MZ}$ estimate variance σ_{A}^{2} $2*(r_{MZ}-r_{DZ})$ Z = ADE Z = ACE Z = AE model = E model	ce components from tw σ_p^2 $2^*r_{MZ} - 4^*r_{DZ}$ te components from twin σ_c^2 $2^*r_{DZ} - r_{MZ}$	σ_{s}^{2} $1 - \sigma_{A}^{2} - \sigma_{D}^{2}$ in correlations σ_{E}^{2} $1 - \sigma_{A}^{2} - \sigma_{D}^{2}$
Why twin studies challenged the status quo in the 80s?	Twin studies -	Highlight the in 's, people denied	y large -> Small domina nportance of genetic va d the influence of geneti	riation
What are the assumptions of the classical twin design?	 Assumptions of CTD The sample is representative of the population Random mating - No correlation between the parents, which is often not true (high IQ children have high IQ parents) Equal environmental assumption No correlation between A-C or A-E - Safe assumption for personality, risky assumption for IQ (IQ correlates with high economic status, affects the offspring environment) No Genetic-environment correlation - Younger children intelligence are more dependent on shared environmental effects, older children are more dependent on genes 			
What is the difference when there is AxE	No AxE correl	ation		

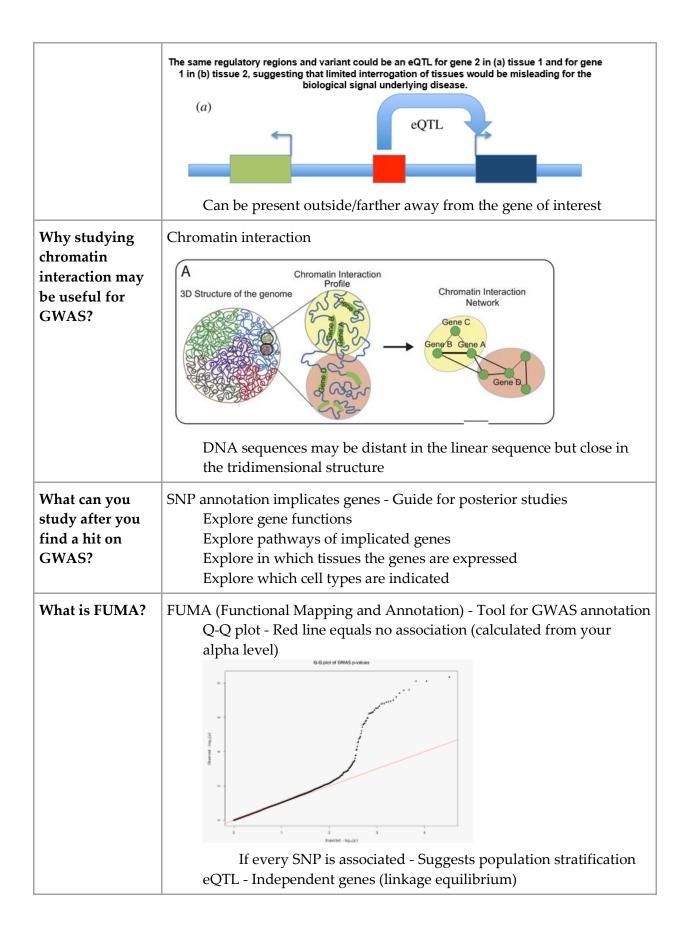

4. From heritability to functional experiments

Why is the field of human genetics developing so rapidly?	Field of human genetics is rapidly advancing in the recent past New technologies Large scale collaboration Novel disease insights
What was interesting to notice regarding the number of publications of Classic Twin Studies in the last few decades?	Meta-analysis of all twin studies Between 1900-2012 Extraction of sample size, effect size Standardize trait quantification -ICF There is still an increase of twin studies every year, even though we now can genotype individual very cheaply ²⁰⁰ 2,748 studies published between 1958-2012 ¹⁰⁰ 8 Reporting on 17,804 traits ¹⁰⁰ Avg. NPairs ¹⁰⁰ 14,558,903 partly dependent twin pairs ¹⁰⁰ 4 Avg. NPairs ¹⁰⁰ 4 Avg. NPairs
How much of 'human behavior' is genetically inherited?	Most studied traits: Weight, diseases, big-five personality traits, intelligence If you lump all traits together into 'human behavior' "MZ "MZM "MZF "DZ "DZSS "DZM "DZF "DOS "h2 % Dh2 % Dh2 F "C2 "C2 SS "C2 M "C2 F 1.0 0.8 0.6 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
	0.0 0-11 years 12-17 years 18-64 years 65+ years 0-11 years 12-17 years 18-64 years 65+ years Rmz = 0.636 RDZ = 0.339 Genetic inheritability = 0.49

	Shared environmental effect = 0.17
What were the main conclusion of meta-analysis of twin studies?	Main conclusion All traits are heritable to some extent Shared environmental effect is relatively small Most traits seem to have additive genetic effects Interactive website: match.ctglab.nl
What is heritability?	Heritability - Proportion of trait variance attributable to genetic variance Variation in genes underlie trait differences between individuals
How close are humans to: a. Mice b. Chimpanzee	If heritable - Look at the DNA 3 billion base pairs - One in every thousand base pair is different between people
s c. Humans of the opposite gender	Human and mice - $87,5\%$ Image: Single constraints of the second s
What is the difference between	Monogenic disorders - One gene/one mutation Most genetic causes are already known Polygenic disorders - Influenced by multiple genes, each of small effect


polygenic disorders?	Genetic causes mostly unknown (correlation with environmental factors) Genetics variations (SNPs): Inside or outside genes Genetic variations can be: harmless, harmful, latent, silent		
How were genetic studies made before the advent of GWAS?	Discovering genes for complex traits Candidate gene study - Before 2005 GWAS - Genotyping became cheap and accessible		
What was the first GWAS hit discovered?	GWAS results First hit discovered - Macular degeneration (a few genes with large effect sizes) Most cases - Small effect sizes, large samples are needed Most genetic variance is not in the genes! Gene deserts or intronic regions		
What do GWAS hits signify for researchers?	GWAS hits are hard to interpret SNPs are correlated in the same chromosome There are often hundreds of hits - it is difficult to choose a gene for a follow up study		
What is a Manhattan plot?	Manhattan plot - GWAS results		
Why molecular studies can help us understand GWAS hits?	Interpreting GWAS loci Interference with DNA folding Positional information - SNP can indicate genes of interest		

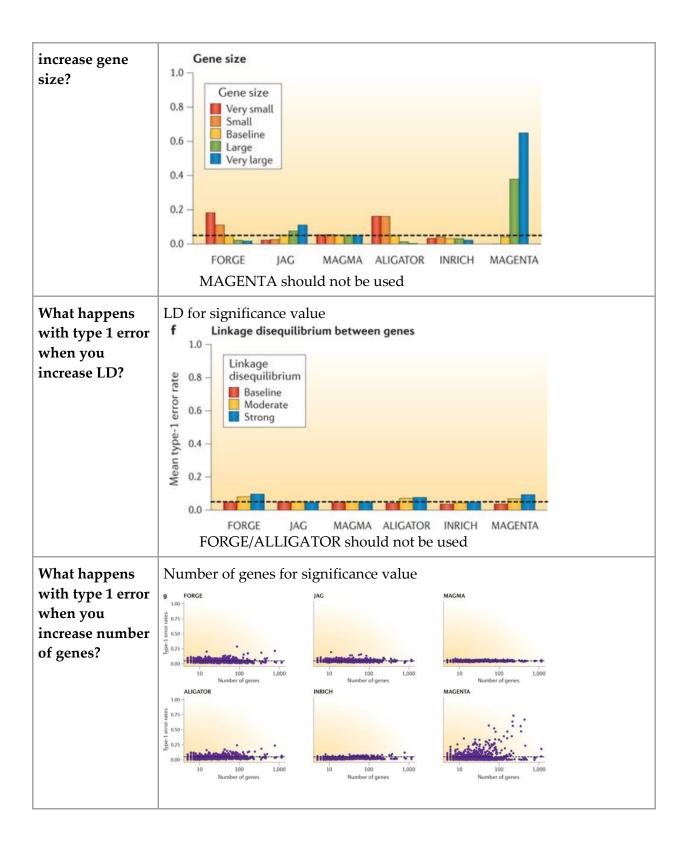
What is scRNAseq?	Novel techniques: scRNAseq - Gene expression at a cellular resolution (GWAS for specific cell types) Single-cell analysis respected analysis respected ingle-cell profiling (e.g. #CS-based SMART-seq2) Data analysis Gene expression heat map
How to design follow up experiments from GWAS hits?	Designing follow up experiments Classical techniques (knockout, knockdown) - not viable for SNPS with small effect sizes Taking into account polygenic nature of traits: Chemo and ontogenetic techniques; induced pluripotent stem cells from patients with disease (create mini-brains in the lab)
What is the monozygotic and dizygotic twin correlation for IQ? Which model does this suggest?	Individual differences in IQ Twin correlation for IQ - 0.82 MZ and 0.45 DZ


5. GWAS and interpretation of GWAS results

What is the purpose of Disease Genetics? What is the main	Disease Genetics Predict if someone will get sick Test hypothesis about relationships to other diseases or traits (comorbidity) Understand the biology of the disease so we can design better treatments and diagnostics Twin and family studies do not measure the variation at all - They inform
difference between GWAS and twin studies?	the contribution of genetics/environment
Why some GVs are correlated to one another?	 What creates genetic variation Mutation - Spontaneous change in the DNA Recombination - Re-shuffles existing patterns of variation Consequences - Genetic variants are correlated because they share a history of inheritance Correlation decreases over generations due to recombination Depends on linkage disequilibrium
What did the HAPMAP project do? Why was this important?	Linkage disequilibrium map of the human genome HAPMAP projects - Genotyping of different populations with different ethnic backgrouns Limited haplotype diversity - Correlated blocks of SNPs (a) Haplotype blocks Block 1 Block 1 Block 2 Block 2 Block 4 Block 4 Block 5 Block 4 Block 5 Block 4 Block 5 Block 4 Block 5 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 5 Block 1 Block 5 Block 1 Block 5 Block 1 Block 5 Block 5 Block 1 Block 5 Block 5 Block 1 Block 5 Block 5 Blo

What is the common GWAS threshold?	Statistical tests for every SNP -> High number of false positives GWAS threshold is 5*10e-8 GOLD standard for association studies - Replicating association in different laboratories
What are examples of false replications and the arguments that were used to try to justify them?	 Not true replications - and proposed explanations Association to the same trait, but a different gene - Justified by Genetic heterogeneity (different populations) Association to same trait, same gene, different SNPs - Justified by Allelic heterogeneity Association to same trait, same gene, same SNP, opposite direction - Justified by Allelic heterogeneity/population differences Association to different, but a different correlation phenotype - Justified by Phenotypic heterogeneity (depends on phenotype correlation!) No association at all - Justified by "Sample size too small"
What is a true replication of a GWAS?	True replication - Same trait, same SNP, same allele, same direction of effect, different and independent population
What do single outlier dots in a GWAS might indicate?	Manhattan plot 50 J I I I I I I I I I I I I I I I I I I
How is causation proved from a GWAS analysis?	Functional studies - Where is this gene being expressed? Develop ideas for posterior causal studies Causation is proved with clinical trials/pharmacological assays
Why is it difficult to interpret GWAS hits?	 Post GWAS annotation and interpretation LD complicates the interpretation of results - You do not measure causal genes Some SNPs are known to have no effect Some SNPs are known to have a direct effect - Change RNA structure or protein; can be located in exons or introns

What are CADD scores - Combined Annotation Dependent Depletion score Tool for scoring deleteriousness of SNPs + insertions and deletions in the human genome CADD scores - Combined Annotation Dependent Depletion score stream of the human genome	What are the functional categories of SNPs? If there are many GWAS hits, how can you choose SNPs for posterior studies?	Functional categories of SNPs Protein coding - May alter protein structure (truncated proteins) Splicing regulation - Disrupt splicing regultation Transcriptional regulation - Disrupt gene regulation (TF binding sites, CpG islands, microRNAs) Post-translation modification - Interfer with proper posttranslation modification of proteins How to pinpoint causal genes based on GWAS risk loci Are there functional variants in GWAS risk loci? Are there SNPs with high CADD scores or low regulomeDB scores? Are there regulatory variants or eQTLs in GWAS risk loci? Example CADD scores higher than 10 - Select important SNPs RegulomeDB score 1f HiC interaction in the Brain
Higher than 20 - Indicates the 1% most deleterious		CADD scores - Combined Annotation Dependent Depletion score Tool for scoring deleteriousness of SNPs + insertions and deletions in the human genome Higher than 10 - Predicted to be 10% most deleterious substitutions



6a. Gene-set analysis

What are the options to test for functional clustering of SNPs?	Testing for functional clustering of SNP associations Single SNP analysis Gene-based analysis Single SNP analysis Gene-based analysis - Gene as an unit of analysis Gene-set analysis (binary) - Biological pathway Gene-property analysis (continuous) - Expression levels or probability of being a member of a gene-set
What is the problem with testing for the joint association of all SNPs? How would you solve that?	 Gene based analysis Tests for joint association effects of all SNPs in a gene, taking into account LD (correlation between SNPs -> results in false positives -> multicollinearity must be avoided) (Exam question) No single SNP needs to reach GWAS significance -> the gene-based may still be significant
What does a single dot in a gene Manhattan plot might represent?	SNP Manhattan Plot Every dot is a single SNP

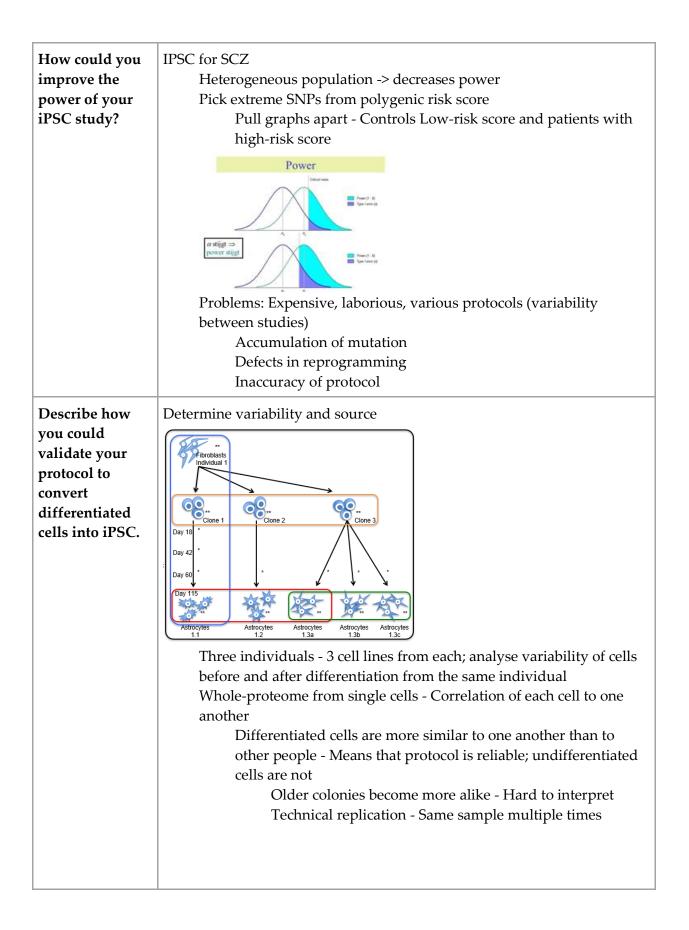
What are the	Gene-based analysis
pros and cons of	Pros: Reduce multiple testing, accounts for heterogeneity in gene
gene-based	(small effects of single SNPs), immediate gene-level interpretation
analysis?	(easier to come up with follow-up hypothesis)
	Cons: Disregards regulatory/non-genic information, still a lot of tests
What are the	Using gene as an unit of analysis
pros and cons of	Pros
using genes as a	Reduce multiple testing
unit of analysis?	Increases statistical power
	Deals with genic heterogeneity
	Provides immediate biological insights
	Cons
	Selecting reliable sets of genes is difficult
	Different levels of information
	Different quality of information
On what basis	Choosing gene-sets can be based on:
can you choose	Transcriptional regulatory network Virus-host network Metabolic network Protein-protein interaction Disease network
gene sets?	A Destant were based in the second se
	Protein-protein interaction networks
	Yeast-two hybrid or immunoprecipitations - Real differentiated
	cells, extract real interactions!
	Co-expression - Protein interactions expressed at the same in the
	same tissue/organelle
	Transcription regulatory networks
	Biological pathway
What is the	Choosing gene sets
problem with	KEGG (provides cascade of events), Gene Ontology, Ingenuity
public databases	(paid), Biocarta (functional relationships between proteins involved),
of gene sets?	String Database, Human Protein Interaction Database; or you may
	create a manually curated by experts lists
	Public databases - Biased (not all genes are included), disease genes
	tend to be investigated more often, genes that are more investigated
	will have more interactions), not always reliable (interactions are
	often predicted, not validated; if experimentally tested, it is unknown how reliable it is)
What was the	Comparing public databases and manually curated
problem when	SPL list - Synapses

the SPL list (manually curated) was compared to public databases?	438/1043 of SPL genes have no KEGG pathway 388/1043 of SPL genes have no gene ontology 655 are not synaptic according to the database
On which aspects do tools for genes-set analysis differ?	 Tools for gene-set analysis Differ in: Self-contained or competitive tests Different statistical algorithms test different alternative hypothesis Different sensitivity for LD, number of SNPs, number of genes, background heritability
What is the difference between self- contained and competitive tests?	Self-contained - H0: Genes in gene-set are not associated with traits; problematic because polygenic traits will always be associated with a large part of the genome Competitive tests - H0: Genes in gene-set are not more strongly associated than genes NOT in the gene-set
What happens with type one erros when you use a competitive test? And when you use a self- contained test?	The more polygenic your trait is, the more likely you are to get a false positive when using self-contained tests (higher background heritability -> effect of the entire genome on the trait) $\int_{0}^{5} \frac{5elf-contained}{10} \int_{0}^{5} \frac{5elf-contained}{1$
What is the difference between minimal P-value and combined p- value?	Different statistical algorithms test different alternative hypothesis Minimal P-value - At least one SNP needs to be significant Combined P-value - It doesn't matter if SNPs are signicant
What happens with type 1 error when you	Effect of gene size for signifance value

6b. MAGMA

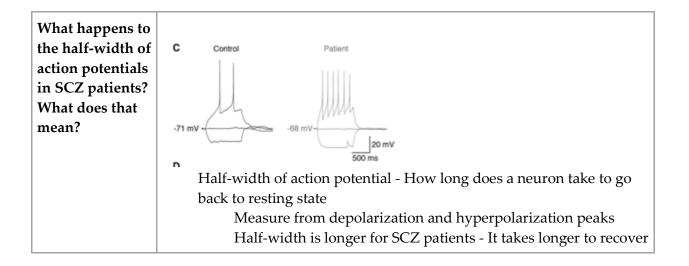
What is MAGMA?	MAGMA - Software tool for gene and gene-set analysis Input - Genotype and phenotype data; summary statistics for GWAS + gene definition and gene sets
What are the three main steps of using MAGMA?	Three main steps Annotation - Map SNPs onto genes Gene analysis - Compute association of genes with phenotype Gene-set analysis - Gene association in gene sets Extension modeling options: Advanced analysis (conditional and joint analysis)
What is the annotation stage based on?	Annotation - Based on physical location of SNPs/genes in the DNA Window around gene - Variable, mainly used for upstream/transcription start site of gene Genes can be non-protein-coding as well
What are the three models for SNP association? Which one is the most recommended?	 Gene analysis Joint association of all SNPs in a gene with the phenotype Different analysis models have greater sensitivity to different genetic architectures MAGMA has different models with different sensitivies Principal component linear regression - Requires raw genotype data SNP-wise mean - Mean SNP association SNP-wise Top - Strongest SNP association SNP-wise Multi - Combines SNP-wise mean and top
Why does the gene-set analysis use a one-sided statistical test?	Gene-set analysis - Essentially a t-test Unit of analysis: Genes One-sided test - High negative association scores are not interesting Self-contained analysis (single sample t-test) - H0 - μ s = 0 Competitive analysis (dual sample t-test) - H0 - μ s = μ 0
What are some stastical challenges you might face when using MAGMA?	Statistical challenges Outlier effects - Small subset of strongly associated genes driving the association Independent observations - Linkage disequilibrium Model covarience Confounding - Apparent effect may be induced by an overlap with truly associated set

	Confounding factors can only be ruled out by experimental design
Which statistical test is used in the competitive analysis of MAGMA?	Competitive analysis Linear regression model - Two sample t-test (much more flexible) Example: Brain-specific gene expression Lower p = higher Z
How can you detect an effect when a gene has a correlated expression across tissues?	 Correlated expression across tissues Solved by multiple regression - If the effect is true, the apparent effect of correlated variables will disappear Requires true effect variable to be present Very large number of variables (reduces power) This does not rule out confounding effects
Why might you want to divide your gene set into different subsets?	Interaction analysis Multiple linear regression - Analyse the overlapping of pathways Example: Division of miRNA-145 gene set into four subsets: Three non-significant, one very significant -> This effect would be undetectable by regular gene-set analysis


7a. Modeling genetically complex disorders using induced pluripotent stem cells

What is the	Stem cells - Can divide or differentiate into different cell types
definition of a	Stem cens - Can divide of differentiate into different cen types
stem cell?	What is a stem cell?
	replicate itself, or
	A single cell that can
	differentiate into many cell types.
	nd by Cahama Namony Iar Ha National Academic, y Same Cafe. An Denniou of the Science and Tuxori
What do	Trophoblest Forme pleasate
trophoblasts and	Trophoblast - Forms placenta Blastocyst - Forms the person
blastocyst form?	blastocyst - romis the person
	fertilised egg
	lettilsed egg
	totipotent stem cells
	blastocyst containing
	blastocyst containing pluripotent stem cells
What are the	Types of potency
types of stem	Totipotent - Can make an entire human being
cell potency?	(extraembryonic/placental cells + all tissues)
	Before 16-morula stage
	Pluripotent - Can make all tissues (but cannot form an
	individual/form placental tissue)
	Multipotent - Can make more than one cell type, but not all
	(haematopoietic stem cells)

How would you know if your stem cells have differentiated into the tissue you wanted?	 Model tissue in vitro Embryonic stem cells from the inner cell mass (pluripotent) Differentiation can be mimicked in vitro - Inserting the same factors in vivo How to know you have made the right tissue - Antibodies for cell markers
	Dan Chi ALDH
What are the four Yamanaka factors? How were they discovered?	Induced pluripotent stem cells Yamanaka factors - Turn differentiated cells into pluripotent cells (OSKM) Yamanaka factors - Turn differentiated cells into pluripotent cells (OSKM)
How do Yamanaka factors work?	Yamanaka factors: Somatic genes are silenced, pluripotent genes will be switched on Chromatin remodeling Epigenetic remodeling
What are two options to deliver stem cell gene factors to a cell?	Delivery of factors


What causes X- inactivation?	Females are mosaics - Different inactivation of X chromosome XIST - RNA transcript activates PCR2 (adds methylation to DNA) H3K27 - Repressive chromatin marker of inactivation
Which method of stem cells delivery factors would be safer for ex-vivo therapy for women? Why?	P1 P3 P3 P8 P14 P1 P4 P8 P14 P1 P4 P8 P14 P1 P4 P8 P14 P14 P14 P14 P14 P14 P14 P14 P14 P14
What happens to XIST expression during lentivirus treatment?	XIST expression remains normal in episomal reprogramming, not in lentivirus reprogramming XIST expression KIST expression FIP5C5 P5 SC5 P5 VIP5C5 P5 VIP5C5 P10 X-linked disorders could be treated with X chromosome re-activation of lentivirus
Describe a pluripotency test. What is the X and Y axis? What you expect if a cell was converted successfully into PSC?	Pluripotency test Ratio of gene expression of PSC (Y axis) compared to differentiated cells (X axis)

How would you prove that a cell line is pluripotent?	Prove that a cell line is pluripotent: SCZ 4 SCZ 4 Cost well in the ispluripotent: SCZ 4 Cost well in the ispluripotent: Cost
Why should we use iPSC?	Immunostaining - Check for expression of PSC factor Immunoblot - Expression of these protein Three markers for the the three germ layers Benefits of iPSC Ethical - No embryos needed IPSCs are identical to donor - Safer transplantation, good for genetic disorders that are very complex (e.g. schizophrenia with 108
Define the main differences between CNVs and SNPs associated with schizophrenia.	associated SNPs) Genetics of SCZ Heritability: 81% Lifetime risk: 1% CNVs (copy number variants): Rare, large effect, few patients, low penetrance SNPs: Common, very small effects (combined large effects), majority of patients
How has been SCZ been studied in the past?	Studying SCZ Post-Morten studies Animal studies: Pharmacology, transgenic mice (pick CNV or CRISPR 108 -> incredibly laborious) Picking CNV - DISC1, miR-137, NRXN1 -> Create synaptic deficit (they are all synpase proteins); creates a biased sample

	Cellomics Astrocyte area - Variation is larger between individuals (pink) compared to clones from the same individual (red) or technical replicates (green)
	Mean Astrocyte Area
	45000 40000 35000 225000 220000 15000 5000 0
	1 2 3 4 5 6 7 8.1 8.2 8.3a 8.3b Line / Clone
How many clones should we use per individual to optimize resources?	Conclusions 1 clone per individual and multiple people Sequence entire genome from each cell - Check for unexpected mutations (PRS, CNVs)
Why should we not use lentivirus to study rare diseases?	Episomal reprogramming is better for rare disease - Lentivirus requires integration, may disrupt DNA in unexpected ways
What are some neuronal dysfunctions of SCZ patients?	Neurons in SCZ Dysregulation of excitation-inhibition network Synaptic pruning -> brain volume decreases SMAD inhibition - Block pathways of differentiated cells Forms rosettes -> neural tube-like, makes both neurons and glial cells HSHH and Valproic acid - GABAergic cells Neuritis length is reduced in SCZ patients
	Dendrite length stays the same Axonal length is reduced in SCZ patients

What happens with astrocytes in SCZ? What happens when SCZ astrocytes were co-cultured with neurons?	Astrocytes in SCZ
	synapses per cell VGAT per cell VGAT per cell VGAT per cell VGAT per cell Sandwich culture - Cells not in physical contact, but astrocytes can secrete factors
What happens with oligodendrocyte s in SCZ?	Oligodendrocytes in SCZ White matter abnormalities in patients Less MBP in chimeras (human iPSC in mice)
Why should we use organoids to study SCZ?	Organoids - three dimensional -> allows myelination to occur Reelin - Produced in the outer layer of the brain Ctip2 - Layer 5/6 MBP - Myelinating Oligodendrocytes

7b. Gene function analysis in Neuroscience for Mendelian Disorders

How could we use yeast to study a human disease, like Wilson's?	 Wilson's disease - ATP7B Monogenic disease with a known gene - The observed allelic variant of the patient will or will not explain the disease ATP7B structure - If the mutation is on the ligand site, you may argue that the mutation is causal Wilson's disease in yeast - ccc2 gene from yeast is similar to ATPB7 Copper transport -> important for iron metabolism Reinserting ATP7B in yeast restores function in knockout yeast Tests for different patient mutation Cheap, ethical and quick (three days)
What are homologs, orthologs and paralogs?	Homologs - Genes shared from a common ancestor; divided in ortholog and paralogs
What can you do with a knockout?	Knockout functions Investigate gene function Test causality of candidate disease mutation Develop and test therapies in disease model

What are two common methods to inactive genes?	Methods to inactive genes Gene knockouts vs RNA interference
What is the phenotype of someone with AUTS2 deletion?	AUTS2 in a syndromes form of autism AUTS2 deletion - Autistic behavior, IQ decline, short stature, microencephaly, feeding difficulties,generalized hypotonia (muscle weakness) <i>Heterozygous loss of gene is sufficient to cause the phenotype</i>
What correlates with the severity of phenotype of AUTS2- deletion patients?	All mutations were intronic - Variant of unknown significance AUTS2 deletions are observed in patients with these symptoms Heterogeneity of phenotypes - Sum of presence of scores = AUTS2 score

What is the explanation	Evolutionary conservation of AUTS2
for the fact the deletions	Amino acid identity - C-terminus is more conserved
in the C-terminus are	evolutionarily than N-terminus
more severe?	Weak / moderate Strong Zebrafish may have a functional ortholog to the human
	protein
What method could you use to identify an alternative transcriptional splice site?	Alternative transcriptional splice site Present in the middle of exon 9 - There is two gene products inside the same gene RACE - Rapid Identification of cDNA Ends
How could we use zebrafish to study a human deletion like AUTS2?	Zebrafish A Control Control Morpholinos - Knockdown of AUTS2 causes microencephaly (establishes causality between gene and phenotype) Phenotype is rescued by the insertion of human AUTS2 cDNA into zebrafish cDNA does not have introns - It is easier to produce in silico Microencephaly is also rescued by the C-terminal short isoform (cDNA)
How can facial dysmorphism be quantified in zebrafish?	Facial dysmorphism

	D Control Control Blue - Stain for cartilage Larger distance between Ch and Mk (ceratohyal and Meckel's)
What happens to the number of neurons in AUTS2 zebrafish?	Reduced proliferation of neuronal progenitors in auts2 morphants Reduction of differentiated neurons Phosphohistone-h3 antibody - Epigenetic markers (proliferating neurons) There are less proliferating precursor cells
What is the main advantage of studying mendelian disorder, as opposed to complex traits?	Mendelian disorders - Sample size can be much smaller Causal role of mutation - Large effect size
What is the mechanistic function of AUTS2? Why is it unusual?	AUTS2 gene product function - Still unknown Possible transcription factors Enhancer regions in the middle of AUTS2 gene AUTS2 is part of Polycomb complex - Positively regulates transcription of targeted genes (while most other components of this complex reduce transcription)